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Abstract—In this paper, we address the antenna array design
problem at low signal-to-noise ratio (SNR). The Cramér-Rao
bound (CRB) is the most commonly used criterion to solve
the array optimization problem due to its computing simplicity
and tightness in the asymptotical region. However, there exists
a threshold SNR at which the estimation variance significantly
deviates from the CRB. In this case, the CRB is no longer a tight
bound. To address this issue, we propose the use of the Barankin
Bound (BB) on the source location and source intensity in
astrometry and photometry problems as an alternative optimiza-
tion criterion. BB provides a mean square error (MSE)-optimal
trade-off mainlobe width and sidelobe level of beampattern. The
performance of the obtained array geometries is assessed and
compared by evaluating the aforementioned bounds and the
mean square error (MSE) on the estimation of source location
and intensity. The simulation results illustrate that the BB-based
criterion provides a trade-off between increasing the estimation
accuracy and reducing the ambiguity.

Index Terms—Barankin bound, Cramér-Rao bound, array
selection, threshold SNR, performance analysis

I. INTRODUCTION

In recent decades, radio telescope arrays have grown in size,
with many more antenna elements and unprecedented spatial
spread. The increased number of antennas improves the reso-
lution and sensitivity of the interferometer, such as those used
in NenuFAR [1] and SKA [2]. Since the estimation accuracy
of the antenna array depends essentially on the positions of the
antennas, the array geometry design is a fundamental problem
before putting the instrument into operation. The antenna array
design problem can be solved by formulating it as an optimal
selection problem over a grid [3] in order to make the solution
tractable.

To solve the array selection problem, we need to evaluate the
accuracy of the system in terms of MSE. However, assessing
MSE requires large numbers of Monte-Carlo simulations,
which can quickly become computationally expensive as the
dimension of the problem increases. To overcome this diffi-
culty, lower bounds of MSE are chosen and used as an antenna
selection criterion [4]. In array processing, the Cramér-Rao
bound (CRB) is commonly used as a design criterion to solve
the problem of optimal antenna placement [5]–[7], due to its
simplicity and existence of closed form.

However, it should be noted that CRB is only accurate at
high SNR. Due to the presence of high sidelobes or grating
lobes, the CRB is inaccurate at low SNR [8]. This can be a
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major concern in the field of radio astronomy [9]–[11], where
sources generally have low SNR. The low-SNR region is
delimited by the so-called threshold or breakdown SNR, below
which the performance of estimators degrades dramatically.

As one of the most powerful lower bound on the variance of
an unbiased parameter estimate, the Barankin Bound (BB) can
be used to predict the threshold SNR [12], below which the BB
is much tighter than CRB. Theoretically, the BB is the solution
of an integral equation, and thus, it generally cannot be derived
in closed form. However, many approximations of the true
BB have been proposed, such as the McAulay-Seidman [13],
the Hammersley-Chapman-Robbins [14], and the McAulay-
Hofstetter [15] bounds.

To the best of our knowledge, there is no published work
in the literature regarding the use of the BB for solving
the antenna selection problem at low SNR, except [16] in a
Bayesian context (which is beyond the scope of our work)
of cognitive antenna selection, in which the authors used a
specific BB bound, namely the Bobrovsky-Zakai bound. In
this paper, we will solve the antenna selection problem at low
SNR by using CRB-based and BB-based design criteria. The
performances of the two optimized arrays are evaluated and
then compared from the perspectives of sidelobe level and
MSE threshold SNR. At last, it is demonstrated that the BB-
based criterion leads to better estimation performance than
CRB-based criterion, especially at low SNR.

The rest of this paper is organized as follows. Section II
presents the system model. In Section III, the background and
derivation of the CRB and the BB are given. The problem
formulation and optimization methodology are described in
Section IV. Simulation setting and result analyses are pre-
sented in Section V. Finally, conclusions are drawn and future
research directions are proposed in Section VI.

II. SYSTEM MODEL

An antenna array with p identical sensors is considered,
in which the position of the i-th antenna is denoted by
ri = [xi, yi, zi]

T . A single, narrowband far-field source s(t)
centered at frequency ωc = 2π

λ impinges on the array.
The position of the source is represented by the unit vector
ℓ = [l,m, n]T , where l, m and n are direction cosines.
Details about the coordinate systems, which are usually used
in radio astronomy as source coordinates, can be found in [17].
Consequently, the array signal vector x(t) ∈ Cp reads as

x(t) = a(ℓ)s(t) + n(t), (1)
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where n(t) is the p× 1 noise vector, s(t) is the scalar source
signal, and a(ℓ) is the spatial signature vector with expression

a(ℓ) =
[
e−j 2πλ d1(ℓ), e−j 2πλ d2(ℓ), . . . , e−j 2πλ dp(ℓ)

]T
, (2)

in which di(ℓ) = ℓT ri is the propagation delay associated
with the i-th antenna.

All the antenna positions can be stacked into a matrix Ξ =
[r1, r2, . . . , rp]

T ∈ Rp×3. The spatial signature vector can then
be rewritten as

a(ℓ) = exp

(
−j

2π

λ
Ξℓ

)
, (3)

where the exponential function is applied element-wise to the
arguments.

The random source signal s(t) follows a complex Gaussian
distribution with zero mean and variance σ2

s . The noise of the
antenna is assumed to be white complex Gaussian, circularly
symmetric and independent of the source signal, and the noise
variance σ2

n is here assumed to be the same for each antenna.
Thus, the model of the covariance matrix is

R = σ2
sa(ℓ)a(ℓ)

H + σ2
nIp. (4)

In our problem, both the position and the intensity of
the source need to be estimated. As a result, the unknown
parameter vector reads as

η = [l,m, σ2
s , σ

2
n]

T . (5)

In the following, η0 = [l0,m0, σ
2
s0, σ

2
n0]

T represents
the true value of the unknown parameter vector η. The
joint probability density function for the realization x =
{x(t1),x(t2), . . . ,x(tN )} is expressed as

p(x|η) =
N∏
i=1

1

πp|R|
e−x(ti)

HR−1x(ti), (6)

in which | · | denotes the determinant operator.
For the convenience of presentation but with no loss of

generality, we will focus on the planar array with zi = 0
in the remainder of this paper.

III. BACKGROUND AND EXPRESSION ON MSE LOWER
BOUND

Denoting an unbiased estimate of the unknown parameter
vector by η̂, it is shown in [15] that

cov(η̂) ≥ CBB ≥ CCRB, (7)

where cov(η̂) = E{(η̂ − η)(η̂ − η)T } denotes the estimation
error covariance matrix, CBB represents the BB matrix, CCRB
is the CRB matrix, and the matrix inequality means that the
difference between two matrices is a non-negative-definite
matrix. In fact, in addition to the unbiasedness of the estimator
at the true value, the CRB adds the constraint of first-order
derivative unbiasedness in the vicinity of the true value, while
the BB imposes that the estimator should be unbiased for all
possible values of the unknown parameters [18]. This is why
the CRB is called a local bound (i.e., at the neighborhood

of true value), while the BB is known as a global bound.
Consequently, it implies that the BB is a tighter bound than
CRB.

A. Cramér-Rao Bound

As mentioned above, the CRB is widely employed as an
optimization criterion in the array selection problem. Minimiz-
ing the CRB contributes to decrease the mainlobe width in the
beampattern, resulting in a better resolution of the estimator.
However, the CRB does not take the sidelobes into account.
The sidelobes increase along with the decrease of the mainlobe
width, which will substantially degrade the performance of the
estimator at low SNR. In this part, the formula of the CRB
for our problem is given in detail.

The CRB is the inverse of Fisher information matrix (FIM),
i.e., CCRB = F−1, in which the FIM reads as [19]

F = N

[
∂vec(R)

∂η

]H
(RT ⊗R)−1 ∂vec(R)

∂η
, (8)

in which

vec(R) = (a∗ ⊙ a)σ2
s + σ2

nvec(I), (9)

where ⊗ is the Kronecker product, vec(·) represents the
operator converting a matrix to a vector by stacking the
columns of the matrix, ⊙ is the Khatri-Rao or column-wise
Kronecker product and ∗ denotes the complex conjugation.

Then, the derivative can be written as

∂vec(R)

∂η
= [Jl,Jm,Jσs ,Jσn ], (10)

where

Jl = j
2π

λ
(Dxa

∗ ⊙ a− a∗ ⊙Dxa)σ
2
s

Jm = j
2π

λ
(Dya

∗ ⊙ a− a∗ ⊙Dya)σ
2
s

Jσs
= a∗ ⊙ a

Jσn
= vec(I),

(11)

with

Dx = diag([x1, x2, . . . , xp]), Dy = diag([y1, y2, . . . , yp]).

B. Barankin Bound

The theoretical constraint (unbiasedness for all possible
values of η) of the original BB is neither applicable nor
computable in practice [20]. As an alternative, the approxi-
mation of BB is calculated by appropriately choosing some
points in the unknown parameter space, namely test points.
In fact, the approximated BB is obtained by expressing the
unbiasedness constraint at the test points. The approximation
of BB applied in this paper is the Hammersley-Chapman-
Robbins bound (HCRB) [14], with the formulas as follows

CHCRB = Φ(B− 11T )−1ΦT , (12)

where Φ = [η1 − η0, . . . ,ηL − η0] is the test point matrix
with ηi denoting i-th so-called test point (i = 1, 2, . . . , L, at
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which the estimator is assumed to be unbiased), and B is the
Barankin matrix with the (i, j)-th component defined by

[B]i,j = Ex|η0
{ν(x|ηi)ν(x|ηj)}, (13)

in which
ν(x|ηj) ≜

p(x|ηj)

p(x|η0)
. (14)

Substituting (6) into (14) for evaluating (13) and after a few
lines of algebra, it yields

[B]i,j =

(
|R(η0)|2

|R(ηj)||R(ηi)|

)N

·
N∏

k=1

Ex|η0

{
e−x(tk)

H [R(ηj)
−1+R(ηi)

−1−2R(η)−1]x(tk)
}

=

(
|R(η0)|

|R(ηj)||R(ηi)||R(ηj)−1 +R(ηi)−1 −R(η0)−1|

)N

,

on the condition that R(ηj)
−1 + R(ηi)

−1 − R(η0)
−1 is a

positive-definite matrix.

IV. OPTIMIZATION METHODOLOGY

A. Problem formulation

We treat here the array design as an antenna selection prob-
lem, which means we aim at determining the placement of K
antennas so that optimal estimation performance of the source
location and intensity can be achieved. The antenna selection
problem can be formulated as an optimization problem based
on some pre-defined performance measures, namely the CRB
or BB in our case. Namely, the optimization problem we aim
at solving is

min
w

f (C(w))

s.t. 1T
p w = K

wi ∈ {0, 1},
(15)

where w = [w1, w2, . . . , wp]
T is the selection vector, in which

wi indicates whether the i-th antenna of the initial array of p
antennas is selected (i.e., wi = 1) or not (i.e., wi = 0), and
f (C(w)) is a cost function related to the lower bound matrix
C(w) chosen as optimization criterion. The cost function is
minimized to select K antennas out of p available antennas.
There are different types of cost functions [21], and the typical
choices are:

1) A-optimality: f = tr{C(w)},
2) E-optimality: f = λmax{C(w)},
3) D-optimality: f = log det{C(w)}.
The A-optimality is chosen here, because it minimizes

the total estimation variance of the unknown parameters. It
is worth mentioning that the noise intensity is a nuisance
parameter in our scenario. In addition, we will consider the
estimation of source position and intensity at the same time,
and therefore, the antenna selection problem can be stated as:

min
w

tr
(
ΨlmsCΨT

lms

)
s.t. ||w||1 = K

wi ∈ {0, 1},
(16)

in which C denotes either CCRB (the classical bound) or CBB
(our recommended bound), and Ψlms is a selection matrix
extracting the bound components corresponding to the source
location (l,m), and intensity σ2

s .

B. Optimization methodology

Concerning the optimization method, the problem (16) can
generally be solved directly and efficiently by using a convex
approximation method [21] or greedy algorithms [3]. However,
it can be difficult to apply the above methods in the case of
the BB due to the necessity of using test points. Since our
aim is to demonstrate the relevance of the BB with respect to
the CRB as an antenna selection criterion, we define a small-
dimensional problem in order to verify the feasibility and
validity of our idea. In this simplified case, we can afford to
use an exhaustive search method to solve the antenna selection
problem.

C. Barankin bound test point selection

The BB is valid for any choice of test points ηi (i =
1, 2, . . . , L) inside the parameter space. However, it is better
to obtain the BB as tight as possible. In our problem, the
parameter space is [l,m, σ2

s , σ
2
n] ∈ (−1, 1) × (−1, 1) ×

(0,+∞) × (0,+∞). We choose the test points to be the
sidelobes of each unknown parameter. This is because the level
of sidelobe reflects the probability of estimation ambiguity. In
consideration of the existence of coupling effects between the
source positions l and m, the test points of l and m are chosen
as the sidelobes of the plan (l,m). For the source intensity
σ2
s and the noise intensity σ2

n, since there exists no sidelobe,
we will just choose several test points in the vicinity of the
true values. More specifically, the test points for σ2

s and σ2
n

are (0.9, 0.99, 1.1)σ2
s and (0.9, 0.99, 1.1)σ2

n. In the following
numerical experiments, the numbers of test points for (l,m),
σ2
s , and σ2

n are 20, 3, and 3, respectively.

V. SIMULATION RESULTS

The whole simulation consists of two parts: the antenna
selection stage and the array performance evaluation stage.

A. Antenna selection

A four-branch cross array is considered in our simulation,
in which each branch is a ten-element half-wavelength spaced
uniform linear array (ULA), i.e., p = 40. The budget for
antenna selection is set to K = 3 for each branch, resulting in
a total of 12 antennas being selected from the candidate array.
The source position is set at (0,0), allowing for the search
of a symmetric array. To simplify the selection process, we
only conduct the antenna selection scheme on one branch and
replicate the results on the other three branches.

It is worth mentioning that at high SNR, the BB coincides
with the CRB and is equivalent as a design criterion. However,
at lower SNR, the BB is a more relevant criterion than the CRB
because of the consideration of the threshold effect. For the
antenna selection stage, we set the SNR to -10dB, where SNR
is defined as 10 log10(σ

2
s/σ

2
n) and σ2

n is fixed as 1.
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(a) (b)

Fig. 1: The antenna array given by (a) CRB-based criterion,
(b) BB-based criterion.

(a) (b)

Fig. 2: The UV plane coverage of the array given by (a) CRB-
based criterion, (b) BB-based criterion.

B. Array performance evaluation

Fig. 1 presents the antenna array selection results of CRB-
and BB-based criteria. Notably, all the antennas of the CRB-
optimal array geometry are located at the border of the
possible positions. This result coincides well with the known
property that the CRB is a local bound, focusing on the array’s
resolution (leading to a thinner mainlobe). However, this type
of array typically results in higher sidelobe levels. In contrast,
the BB criterion leads to only two antennas placed at the
border of the cross branch, ensuring the maximum aperture,
with others located elsewhere to control sidelobe levels. This
can be explained by the use of several test points over the
entire parameter space, which takes into account the ambiguity
effect of the array.

The UV plane coverage of the two geometries is illustrated
in Fig. 2. The UV plane coverage represents the collection of
all baselines, i.e., the distance vector between two antennas,
and is crucial in radio interferometry as it determines the
interferometer’s ability to capture different angular scales on
the sky. It can be observed that the coverage of the BB-optimal
array spreads out more and is more concentric than that of
the CRB-optimal array. Thus, the BB-optimal array provides
better UV plane coverage.

Fig. 3 gives the beampatterns of the two array geometries.
Since it is quite difficult to compare directly the 2D beam-
patterns, two special axes are selected to better illustrate the
beampattern in 1D: the l-direction and the diagonal direction

(a) (b)

Fig. 3: (a) The 2D beampattern of the array given by CRB-
based criterion. (b) The 2D beampattern of the array given by
BB-based criterion.

(a) (b)

Fig. 4: (a) The 1D beampattern of the l-direction. (b) The 1D
beampattern of the diagonal direction. Red dashed (blue solid)
lines represent the result of the array geometries given by CRB
(BB)-based optimization criteria.

(l = m), which are shown in Fig. 4. It is worth noting that
for the beampattern of CRB-optimal geometry, the mainlobe
is very thin, but at the same time the sidelobe level is also very
high. In contrast, the mainlobe of the BB-optimal array is little
wider, whereas the management of the sidelobe is considerably
improved, especially in the diagonal direction.

With the purpose of assessing the performance of the two
array geometries, those CRB and BB are calculated and shown
in Fig. 5 as a function of the SNR. For comparison, the perfor-
mance of the maximum likelihood (ML) estimator is evaluated
by performing 15000 Monte Carlo simulations. For the reason
that the corresponding bounds and MSEs on m estimation
are the same as those on l estimation, only the results on l
estimation are shown in Fig. 5. For both arrays, the behavior
of the BB well reflects that of the MSE, where the difference
in the predicted SNR threshold given by BB is around 10dB
below that of the ML. Notably, the threshold SNR of the
array given by the BB-based criterion is almost 5dB smaller
than that of the CRB-based criterion, indicating that the BB-
based criterion yields better performance in the SNR transition
region. As a result, using the BB-based criterion can increase
the asymptotical region of the array by 5dB, from 3dB to -2dB.

The CRB, BB and MSEs on σ2
s estimation of the two arrays

obtained by CRB- and BB-based design criteria are revealed in
Fig. 6. It is worth noting that there is no difference between the
two arrays’ estimation performances in terms of CRB, BB or
MSE. It means that the objective of optimizing simultaneously
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Fig. 5: Bounds and MSEs on l estimation. Solid lines, dashed
lines, and solid lines with points markers in red (blue) repre-
sent the CRB, BB, and MSEs of the array geometries given
by CRB (BB)-based optimization criteria.

Fig. 6: Bounds and MSE on σ2
s estimation. Solid lines,

dashed lines, and solid lines with points markers in red (blue)
represent the CRB, BB, and MSEs of the array geometries
given by CRB (BB)-based optimization criteria.

the estimation on source location (l,m) and intensity σ2
s is

achieved. In essence, compared with the CRB-based criterion,
the BB-based criterion can significantly improve the source
position estimation performance in the SNR transition area
while ensuring the estimation performance on the intensity.

Remark: Given that the threshold SNR predicted by BB
is always lower than that of the MSE, we opted to conduct
the antenna array selection at an SNR of -10dB (threshold
given by BB). As expected, this led to an improvement in
the performance of the resulting array at the SNR transition
area, from -5dB to 3dB, which is the range where the array
is expected to be used.

VI. CONCLUSIONS

In this paper, the antenna array selection problem is in-
vestigated. The CRB- and BB-based optimization criteria are
compared. The CRB, BB and MSE are calculated to evalu-
ate the performance of the two optimized array geometries.
The simulation results have shown that the BB is a more

appropriate criterion than the CRB at low SNR by improving
the estimation performance in the SNR transition region. The
BB allows for obtaining a trade-off between the mainlobe
width and sidelobe levels, achieving a good precision of es-
timation while reducing ambiguity. Ongoing work consists of
developing efficient and low computational cost optimization
strategies for more general arrays.
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