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Abstract—This paper addresses the problem of detecting fluc-
tuating targets using distributed mmWave radar sensors designed
for indoor monitoring scenarios. The proposed detector is derived
based on the Generalized Likelihood Ratio Test (GLRT) aiming to
estimate the fluctuation parameters of the targets at each sensor
using multiple chirps. The resulting joint test is a weighted sum
of individual tests applied to the square law detector output of
each sensor. Weights are proportional to local Signal-to-Noise
Ratios (SNR) at each sensor, which contrast extremely due to
the variations in aspect angles and path losses for a single cell
under test (CUT). Using Monte-Carlo simulations, we validate
the performance of the proposed detector outperforming conven-
tional detection methods that employ non-coherent integration of
the chirps and aggregation of the tests for all sensors.

Index Terms—Detection, GLRT, distributed MIMO Radars,
fluctuating targets, aspect-dependent targets, indoor sensing.

I. INTRODUCTION

The emergence of Multiple-Input Multiple-Output (MIMO)
millimeter-wave (mmWave) radar sensors has received tremen-
dous interest in recent years especially for indoor sensing
applications [1]. Such applications include human detection
and activity recognition [2], vital signs monitoring [3], and
real-time tracking of multiple individuals [4], to name a few.
Additionally, driven by the availability and affordability of
such sensors, employing widely distributed sensing systems
has drawn attention in the majority of applications due to
the advantages that are allowed by such architectures [5]. In
particular, the use of distributed sensors enables the capture
of highly fluctuating and aspect angle-dependent targets. This
results in a higher detection of such targets in addition to
improving system robustness by providing redundancy in the
events of occlusion or sensor failures [6]–[8].

Typically, detections by multiple widely distributed sensors
are fused in the data domain after processing, rather than
implementing a joint detection scheme. While data domain
fusion allows for the use of simpler detection algorithms at
each sensor, joint detection can potentially offer improved
detection performance by appropriately weighting the data
received from the different sensors and leveraging more the
ones with a higher available signal-to-noise ratio (SNR) [9],
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[10]. Even though the optimum detector in the Neyman-
Pearson sense for fluctuating targets observed with multistatic
radars has long existed in the literature [11]–[13], to the
best of the authors’ knowledge, the corresponding sub-optimal
Generalized Likelihood Ratio Test (GLRT) detector and the
analysis of its performance versus the aspect angle dependence
of the Radar Cross Section (RCS) have not been explicitly
introduced, especially for indoor sensing environments. The
optimum detector performs the Likelihood Ratio Test (LRT)
assuming perfect knowledge of the expected average local
SNRs available to each sensor which is impractical. Thus,
an estimation of the average received power at each sensor
is required for the implementation of the detector.

Accordingly, in this paper, we analytically devise the GLRT
detector for fluctuating targets observed by widely distributed
mmWave sensors each transmits multiple chips (pulses). Due
to the angular diversity, the targets feature an aspect-dependent
RCS that can vary significantly with respect to different
sensors. We formulate the detection problem taking this into
account and utilize Maximum Likelihood Estimation (MLE)
in the derivation of the detector to achieve the optimum
weighting in the GLRT sense. We evaluate the performance of
the proposed detector using Monte-Carlo simulations and show
that it outperforms the conventional detectors which employ
non-coherent integration of multiple chirps and integrate the
data from multiple sensors equally [14]. The proposed detector
realizes higher gain in detection performance in the cases of
higher variance of the RCS with respect to different sensors
and achieves asymptotically the performance of the optimum
LRT detector in extreme scenarios of RCS variation.

Throughout this paper, vectors are denoted in lowercase
bold font, while matrices are in uppercase bold. IL is the
identity matrix of size L× L and 0N is a vector of all zeros
of size N×1. The superscripts .T and .H denote, respectively,
the transpose and the complex conjugate transpose of a vector
or a matrix. The operators |.| and ∥.∥2 are used for the matrix
determinant and the Frobenius norm, respectively. The symbol
⊗ is used for the Kronecker product.

II. SYSTEM AND SIGNAL MODEL

We consider a widely distributed radar system with Q
mmWave MIMO radar sensors, each having Ntx and Nrx
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transmitting and receiving antenna elements, respectively. As-
sume that pq = [xq, yq, zq]

T denotes the absolute position
of the qth radar sensor, where xq , yq , and zq represents the
absolute Cartesian coordinates, with q = 1, 2, . . . , Q. In this
case, a target with absolute position ps = [xs, ys, zs]

T and
absolute velocity vs = [vxs, vys, vzs]

T , will have a relative
distance Rq , azimuth θq , and elevation ϕq with the qth radar
sensor.

The target received signal can be expressed as

xq = αqsq(θq, ϕq) +wq ∈ CNtxNrx×1 (1)

where αq indicates the complex value of the reflected signal
at the qth radar sensor which comprises path losses and target
RCS, and fluctuates from pulse to pulse, wq denotes the
interference signal that can include both clutter and thermal
noise. In this paper, we assume wq ∼ CN (0, σ2

wI) contains
only receiver thermal noise which has a flat Power Spectral
Density (PSD) with P (f) = kBT0, where kB is the Boltzmann
constant and T0 is the effective noise temperature. Moreover,
the signal steering vector is,

sq(θq, ϕq) = aq(θq, ϕq)⊗ bq(θq, ϕq),

where the spatial transmit and receive steering vectors are
defined respectively as

aq(θ, ϕ) =


e−jkT (θ,ϕ)pq,1

e−jkT (θ,ϕ)pq,2

...
e−jkT (θ,ϕ)pq,Ntx

,bq(θ, ϕ) =


e−jkT (θ,ϕ)pq,1

e−jkT (θ,ϕ)pq,2

...
e−jkT (θ,ϕ)pq,Nrx

,
and k(θ, ϕ) = 2π

λ [cos θ cosϕ, sin θ cosϕ, sinϕ]T is the wave-
number vector with θ and ϕ are azimuth and elevation an-
gles, respectively. pq,nt and pq,nr are the locations of the
qth radar transmit and receive array elements, respectively.
At the fusion center, the received signals can be stacked
by x = [xT

1 ,x
T
2 , ...,x

T
Q]

T and w = [wT
1 ,w

T
2 , ...,w

T
Q]

T ,
and α = [α1, α2, ..., αQ]

T . By defining the steering matrix
S ∈ CQNtxNrx×Q as,

S =


s1(θ1, ϕ1) 0NtxNrx · · · 0NtxNrx

0NtxNrx s2(θ2, ϕ2) · · · 0NtxNrx

...
...

. . .
...

0NtxNrx
0NtxNrx

· · · sQ(θQ, ϕQ)

 .

The stacked received signal of M chirps (pulses) in one
Coherent Processing Interval (CPI) reflected from a certain
range CUT can be obtained by

X = SA+W ∈ CΩ×M (2)

where the matrix X = [x(1)x(2) · · ·x(M)] collects the received
signal of M chirps having the received signal at the mth chirp
obtained by

x(m) = Sα(m) +w(m), (3)

A = [α(1),α(2), · · · ,α(M)] represents the fluctuation of
the amplitude of the signal from pulse to pulse, W =

[w(1),w(2), · · · ,w(M)] is the aggregate matrix of thermal
noise for all pulses, Ω = QNtxNrx, and m = 1, · · · ,M .

The reflected signal amplitudes are assumed to be fluc-
tuating from pulse to pulse at each sensor. We consider a
Rayleigh fluctuation model (Swerling II) of the amplitudes
of the reflected signals at the qth sensor which is equivalent to
its complex value being distributed as αq ∼ CN (0, σ2

αq
).

Let H0 represent the null hypothesis that a target is absent,
and H1 represent the alternative hypothesis that a target is
present in the CUT. The detection problem can be cast as the
following binary hypothesis test{

H0 : X = W

H1 : X = SA+W
(4)

In the next section, we provide the corresponding detector
based on GLRT.

III. GLRT DETECTOR DERIVATION

In order to derive the GLRT test, the probability density
function (PDF) of the collection of the received signals from
multiple chirps X under the null and the alternative hypotheses
are to be evaluated. We first simplify the PDFs for a single
chirp, then since the received signals from consecutive chirps
are independent, the PDF of X is the multiplication of the
PDFs of the single chirps. Under the null hypothesis, the
received signal contains only the noise that is modeled as a
central complex white Gaussian noise and has the PDF

p(x | H0) =
1√

π2Ω |Cww|
exp

(
−1

2
xHC−1

wwx

)
(5)

where Cww = σ2
wIΩ. Similarly, under the alternative hypoth-

esis, the received signal has the PDF

p (x | H1) =
1√

π2Ω |Cxx|
exp

(
−1

2
xHC−1

xxx

)
(6)

where in this case, from (3), the covariance matrix of the
received signal is Cxx = SCααS

H + Cww since α and w
are independent, where Cαα is the covariance matrix of α.

Since the reflectivity coefficients with respect to each sensor
are mutually independent, the covariance matrix Cαα takes
the form Cαα = diag

(
σ2
α1
, σ2

α2
, . . . , σ2

αQ

)
which leads to a

block diagonal structure of the covariance matrix Cxx with
the qth block that has the dimensions ζ × ζ defined as

[Cxx]q = σ2
αq
sqs

H
q + σ2

wIζ (7)

Under the alternative hypothesis (6), the log-likelihood func-
tion is

L (p (x | H1)) = −2 ln (π)− 1

2
ln |Cxx| −

1

2
xHC−1

xxx (8)

where the quadratic term of the likelihood function is written
and simplified using the Matrix inversion lemma as,

xHC−1
xxx =

Q∑
q=1

xH
q

(
σ2
αq
sqs

H
q + σ2

wIζ

)−1

xq

=

Q∑
q=1

xH
q

(
1

σ2
w

Iζ −
σ2
αq
/σ2

w

σ2
w + ζσ2

αq

sqs
H
q

)
xq.

(9)
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Similarly, using the Matrix determinant lemma, the logarith-
mic term can be written as

ln |Cxx| = ln

(
Q∏

q=1

∣∣∣σ2
αq
sqs

H
q + σ2

wIζ

∣∣∣)

=

Q∑
q=1

ln
(∣∣∣σ2

αq
sqs

H
q + σ2

wIζ

∣∣∣)

= ln |Cww|+
Q∑

q=1

ln

(
1 + ζ

σ2
α2

q

σ2
w

)
.

(10)

Accordingly, considering the binary hypothesis test in (4), the
optimum detector based on GLRT is obtained by

tGLRT = ln


max

σ2
α1

,σ2
α2

,··· ,σ2
αQ

∏M
m=1

(
p(x(m) | H1)

)
∏M

m=1p(x
(m) | H0)


H1

≷
H0

η

(11)
Using (9) and (10), the GLRT in (11) can be expanded in
terms of the received signal of all chirps and sensors as

tGLRT =

M∑
m=1

x(m)H
(
C−1

w − Ĉ−1
xx

)
x(m)

+ ln |Cww| − ln
∣∣∣Ĉxx

∣∣∣
H1

≷
H0

2η

=

M∑
m=1



Q∑
q=1

x(m)H

q

(
σ̂2
αq
/σ2

w

σ2
w + ζσ̂2

αq

sqs
H
q

)
x(m)
q

−
Q∑

q=1

ln

(
1 + ζ

σ̂2
α2

q

σ2
w

)


H1

≷
H0

2η

=

M∑
m=1



Q∑
q=1

(
σ̂2
αq
/σ2

w

σ2
w + ζσ̂2

αq

)∥∥∥sHq x(m)
q

∥∥∥2
2

−
Q∑

q=1

ln

(
1 + ζ

σ̂2
α2

q

σ2
w

)


H1

≷
H0

2η

(12)
where Ĉxx is the estimated covariance matrix constructed by
the estimated values of σ̂2

αq
through Maximum Likelihood

Estimation (MLE) by minimizing the negative likelihood
−L

(∏M
m=1

(
p
(
x(m) | H1

))
with respect to σ2

αq
. Note that

this minimization can be done separately for each σ2
αq

since
they are independent. More specifically,

σ̂2
αq

= min
σ2
αq

{
−L

(
M∏

m=1

p
(
x(m) | H1

))}

= min
σ2
αq



M∑
m=1

x(m)H

q

(
σ2
αq
/σ2

w

σ2
w + ζσ2

αq

sqs
H
q

)
x(m)
q

− ln

(
1 + ζ

σ2
αq

σ2
w

)


(13)

Solving for σ2
αq

, yields the solution

σ̂2
αq

=

1
M

∑M
m=1

∥∥∥sHq x
(m)
q

∥∥∥2
2
− ζσ2

w

ζ2
(14)

which is the estimation of signal power at the qth sensor. The
MLE estimate above requires knowledge of the noise power
that is estimated using secondary data in adjacent cells free of
a target Xsec as σ2

w = tr
[

1
M

∑M
m=1 XsecX

H
sec

]
/Ω.

It is noted from (12) that the GRLT test is a weighted sum
of the square output of the matched filter of different sensors
where the weights are proportional to the local SNRs available
at the sensors, as suggested in the literature. In the sequel, the
performance of the proposed detector is analyzed numerically.

IV. NUMERICAL ANALYSIS

In this section, we evaluate the proposed GLRT detector
numerically using Monte-Carlo simulations. The detector’s
performance is demonstrated through the use of Receiver Op-
erating Characteristics (ROC) curves. Our proposed detector is
compared to the conventional detector for fluctuating targets,
which comprises square-law detectors at each sensor, with
their output being non-coherently integrated [14]. Throughout
this section, we consider distributed sensors, each equipped
with Ntx = 2 transmitting antennas and Nrx = 3 receiving
antennas for the different configurations and scenarios con-
sidered. We also considered the RF parameters of the sensors
that match the operating parameters for TI IWR6843ISK radar
[15].

First, in Fig. 1, with Q = 4 sensors, an average post-
processing SNRpost = 13 dB, and M = 3Q chirps, we
show the performance of the GLRT detector for three cases
of variance in aspect angle dependence of the fluctuating
targets. In addition to the ROC of the conventional detector,
we show the ROC of the optimum LRT detector for multistatic
radars [11] which assumes perfect knowledge of the local
SNRs at each sensor. The target in Fig. 1(a) is assumed to
be fluctuating with the same average power σα2

q
with respect

to all sensors (isotropic). Accordingly, as expected, all three
detectors manifest the same performance since the optimum
test weights the output of the matched filters of each sensor
equally which is equivalent to the conventional detector that
applies no weighting. On the other hand, in Fig. 1(b) and
Fig. 1(c), the RCS is assumed aspect-dependent with its
value varying in a range of 10 dB and 20 dB, respectively.
The depicted performance suggests that the proposed detector
is crucial when RCS varies dramatically with aspect angle.
Moreover, Fig. 1(c) shows that the proposed detector may
achieve asymptotically the performance of the optimum de-
tector which assumes perfect knowledge of local SNRs in
extreme cases of RCS aspect variance. We also included the
detection performance of individual sensors with no fusion; in
the figure, this is clearly inferior since the total SNR comes
from the integration of all sensors.

Fig. 2 illustrates the performance of the proposed detector
versus the number of distributed sensors while keeping the
post-processing SNR identical, and the number of integrated
chirps M = 3Q. Needless to mention, the proposed detector
does not bring any gain in performance with respect to the
conventional one in the case of Q = 1 since no angle diversity
is exploited. Likewise, it can be also anticipated that the larger
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(a) (b) (c)

Fig. 1. ROC curves for the proposed GLRT detector compared with conventional and optimum LRT detectors where Q = 4, M = 3Q, SNRpost = 13
dB for a fluctuating target with (a) isotropic RCS, (b) Aspect-dependent RCS with maximum variation 10 dB, (c) Aspect-dependent RCS with maximum
variation 20 dB.

Fig. 2. ROC curves of the proposed GLRT detector versus the number of
distributed sensors, SNRpost = 13 dB, M = 3Q.

the number of sensors, the higher gain is obtained by the
proposed detector relying on more measurements with high
average power and weighing the unfavorable ones less.

Similarly, the performance of the detector versus different
values of SNRpost and different number of chirps M while
keeping Q = 4 is depicted in Fig. 3 and Fig. 4, respectively. It
can be observed that the proposed detector provides the highest
gain in the mid-range of SNR values. This can be attributed
to the fact that, at very low SNR values, most of the received
signals from different sensors are inadequate for detection.
Also, for very high SNR values, all the received signals from
different sensors can be highly reliable for detection. This
makes weighting in both cases of high and low SNR not

Fig. 3. ROC curves of the proposed GLRT detector versus different values
of post-processing SNR, Q = 4, M = 3Q

bringing excessive gain in performance. On the other hand,
increasing the number of chirps enhances the estimation of
the received signal power in each sensor which leads to better
performance of the proposed detector. Note that as seen in
Fig. 4, a few chirps as low as the number of sensors is
sufficient to realize a performance gain with the proposed
detector.

V. CONCLUSION

In this paper, we derived a GLRT detector for aspect-
dependent fluctuating targets observed by widely distributed
MIMO radar sensors transmitting multiple chirps. Using the
received signal of multiple chirps, the average received signal
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Fig. 4. ROC curves of the proposed GLRT detector versus the number of
integrated chirps, SNRpost = 13 dB, Q = 4

power at each sensor is estimated through MLE and plugged
into the likelihood ratio test to achieve the GLRT detector.
The resulting detector is a weighted sum of the individual
tests at each sensor, where the weights are proportional to the
local SNR values that vary significantly due to the variance
in RCS versus different aspect angles in addition to the
different path losses towards each sensor. We demonstrated
the performance of the devised detector through Monte-Carlo
simulations and showed that it outperforms the conventional
detector by employing non-coherent integration of the chirps
and equal aggregation of the tests performed on each sensor’s
received signal. The numerical simulations show that in the
cases where the RCS of the targets contrast significantly,
the proposed detector asymptotically achieves the optimum
detector’s performance with perfect knowledge of local SNR
values. Additionally, the simulations offer insights into the
performance of the proposed detector versus post-processing
SNR, the number of distributed sensors, and the number of
integrated chirps.
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