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Abstract—In this paper, we propose an efficient algorithm for
designing multi-unimodular waveforms with low peak sidelobe
level (PSL) toward any time lags of interest, which differs from
existing approaches. The generic PSL metric defined on the
TLOI is formulated for minimization, and the phase values of
waveforms are directly optimized. To be specific, we first convert
the PSL-minimization based waveform design into an lp-norm
based minimization problem. Then, we reformulate it into an
unconstrained optimization problem with respect to the phase
values of waveform elements, wherein the inherent waveform
property of constant envelopes and a discrete Fourier transform
matrix are both used. Our remaining contributions lie in deriving
the complex gradient of the unconstrained objective and also
elaborating its majorant via a Lipschitz-constant related quantity
which is properly designed. A closed-form solution that updates
the phase values through iterations is obtained by the majorization-
minimization framework, and it boils down to a gradient descent
regime. The fast implementation of our algorithm is also provided,
whose performance improvements are verified.

Index Terms—Multi-waveform design, peak sidelobe level (PSL),
time lags of interest (TLOI), phase optimizations.

I. INTRODUCTION

Waveform/code design has been attracting significant interest
during the past decades [1]–[4], which plays an important
role in radar [2], communications [5], active sensing [4],
and coexistence of radar/sensing and communications [6],
[7]. It is widely recognized as an essential key to ensure
high-quality transmissions in these applications, which enables
many advantages [8] such as improved identifiability of targets,
better delay-Doppler ambiguities, increased robustness on
estimations, etc. Conventionally, only a single waveform (or
a code sequence) is to be designed, while the emergence of
multi-input multi-output (MIMO) radar and its integration with
communications in recent years has accelerated the research
progress on waveform design to step into a new era.

There have already been some works on the waveform design
in recent years [9]–[19], which are typically devised on the
basis of optimizing certain criteria with respect to waveform
aspects. Among such existing methods, the ones that focus on
minimizing the integrated sidelobe level (ISL) [9]–[13] or peak
sidelobe level (PSL) [14]–[19], or equivalently, minimizing
the auto- and cross-correlation level of waveforms are most
commonly adopted. In essence, the ISL- or PSL-minimization
based waveform(s) design emphasizes on the principle that a
bank of matched filters for multi-waveform applications can
be implemented by the correlations between waveforms and
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their delayed replicas [4]. Such waveform design is typically
suitable for the situation that receivers are fixed to be the
matched filters, whose focus is solely the quality of waveform
correlations. The major difference between the ISL- and PSL-
minimization based designs is that the former deals with the
reduction of accumulated sidelobes, while the latter devotes to
suppressing the worst-case sidelobe for all time lags.

Regarding the PSL-minimization based waveform design,
there are few works reported in public literature to optimally
generate multiple unimodular waveform(s) [15]–[19]. The
relevant works [15] and [16] mainly dealt with the case of
single waveform at the early stage, whose algorithms suffer
from high computational complexity and low convergence
speed for waveform generation. The later works [17]–[19]
developed in terms of this regime adapts to the case of multiple
waveforms, but their performances are more subject to the
same drawbacks as in the single-waveform case. Generally
speaking, the algorithm developments of these works resort
to iterations, each of which particularly involve repetitive
projections of complex values into their constant-modulus
approximations. This motivates us to devise new methods with
advanced performances from the perspective of avoiding such
redundant procedures. On the other hand, the aforementioned
methods have no concentration on controlling the PSL only
toward certain time lags that are of interest.

In this paper, we propose a fast and efficient algorithm for
designing multi-unimodular waveforms with low PSL toward
any time lags of interest (TLOI). The phase values of waveform
elements are directly optimized, which successfully removes
the repetitive projections of complex values into constant-
modulus approximations used in existing approaches. We start
from formulating a generic PSL metric defined on the TLOI
for minimization, which is converted into an lp-norm based
minimization problem then. Our innovation is to reformulate
the obtained design problem into an unconstrained optimization
problem with respect to the phase values of waveform elements,
wherein the inherent waveform property of constant envelopes
and a discrete Fourier transform matrix are both used. Our
remaining contributions lie in deriving the complex gradient of
the unconstrained objective and also elaborating its majorant via
a Lipschitz-constant related quantity which is properly designed.
A closed-form solution that updates the phase values through
iterations is obtained via majorization-minimization techniques
[20], which boils down to a gradient descent regime. The fast
implementation of our algorithm is provided, whose advantages
over the current state-of-the-art methods are verified.
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Notations: We use | · |, ∥ · ∥, ∥ · ∥∞, (·)∗, (·)T, (·)H,
⊙, ∇, ∇2, max{·}, O(·), 1M , 0P×M , ℜ{·}, and ℑ{·} to
denote element-wise modulus, Euclidean norm, infinity norm,
conjugate, transpose, conjugate transpose, Hadamard product,
gradient, Hessian, maximum value of a vector, order of
complexity, M -length vector of all ones, (P ×M)-dimensional
matrix of all zeros, real part, and imaginary part, respectively.
Moreover, operators dom(·), d{·}, D{·}, FP {·}, GP {·} (or
G̃P {·}), and T {·, ·} denote domain of a function, picking
up the main diagonal elements of a matrix to form a vector,
diagonalizing a vector, applying the (2P −1)-point fast Fourier
transform (FFT) (FP {·}−1 for inverse FFT), truncating the
first P (or the last P ) elements of a vector, and constructing a
Hermitian Toeplitz matrix whose first column and row coincide
with the two input vectors in order, respectively.

II. PROBLEM FORMULATION

Consider designing a set of M unimodular waveforms, each
of which is of code length P . We store all the waveforms into
a matrix denoted by Y ≜ [y1, . . . ,yM ]T ∈ CP×M , whose
m-th column corresponds to the m-th waveform characterized
by ym ≜ [ejψm(1), · · · , ejψm(P )]T ∈ CP×1. Here, ψm(p)
denotes the phase value of the p-th element in ym, which
arbitrarily ranges between 0 and 2π. For the purpose of later
use, we also store all the phase values of each waveform into a
vector, i.e., ψm ≜ [ψm(1), · · · ,ψm(P )]T ∈ RP×1, ∀m ∈M
with M defined as M ≜ {1, · · · ,M}.

Without loss of generality, we denote P as the set of TLOI,
which can be any subset of {−P + 1, · · · ,−1, 1, · · · , P − 1}.
Thus, the PSL defined on the TLOI P, denoted by ζTLOI can
be expressed as

ζTLOI ≜ max
p∈P
{|rmm′(p)|}, ∀m,m′ ∈M (1)

where rmm′(p) is the cross-correlation between the m-th and
m′-th waveforms at p-th time lag given as follows

rmm′(p) ≜
P∑

k=p+1

ym(k)y∗
m′(k − p) = r∗m′m(−p),

∀p ∈ {1, ..., P − 1};m,m′ ∈M. (2)

Hence, the PSL-minimization based waveform design defined
on the TLOI P can be formulated as

min
Y

ζTLOI

s.t. |[Y]m,p′ | = 1, m = 1, . . . ,M ; p′ = 1, . . . , P. (3)

In order to solve (3), we convert the original PSL-
minimization based waveform design to the form as follows

min
Y

( ∑
p∈P

∑ ∑
m,m′∈M
m′ ̸=m

|rmm′(p)|q
) 1

q

s.t. |[Y]m,p′ | = 1, p′ = 1, · · · , P (4)

where the q-th order norm has been employed to approximate
ζTLOI. Note that the problem (4) is equivalent to (3) when q
equals +∞, and it boils down to the weighted ISL (WISL)-

minimization based waveform design (see (42) of [11]) when
q equals 2.

III. EFFICIENT MULTI-UNIMODULAR WAVEFORM DESIGN
VIA DIRECT PHASE OPTIMIZATIONS

Let us store the correlations between ym and ym′ at all
time lags into a vector denoted by rm,m′ ∈ C(2P−1)×1,
i.e., rm,m′ ≜ [rmm′(−P + 1), · · · , rmm′(0), · · · , rmm′(P −
1)]T. For the sake of reformulating (4) into a form com-
posed of matrix-vector products, we also define γ ≜
[γ−P+1, · · · , γ0, · · · , γP−1] ∈ R(2P−1)×1, whose elements
are equal to 1 if their subscripts belong to the set P while
the others are all zeros. Moreover, we introduce a discrete
Fourier transform (DFT) matrix D ∈ C2P×2P , whose (p, p′)-
th element is given by [D]p,p′ ≜ e−j 2π

2P (p−1)(p′−1).
Using the fact that rmm′ = 1

2P JT
2 D

∗((DJT
1 ym) ⊙

(D∗JT
1 y

∗
m′)) , with J1 and J2 defined as J1 ≜ [IP ,0P ] ∈

R2P×P and J2 =

[
0(P+1)×(P−1) IP

IP−1 0P×P

]
∈ R2P×(2P−1),

respectively, the problem (4) can be rewritten as follows

min
Y

1

2P

( ∑∑
m,m′∈M
m′ ̸=m

(
|((yT

mJ1D)⊙(yH
m′J1D

∗))D∗J2|q

⊙γT
)
12P−1

) 1
q

s.t. |[Y]m,p′ | = 1, p′ = 1, · · · , P. (5)

Ignoring the constant scalar 1
2P and also the power 1

q which are
immaterial to optimization, substituting ym = ejψm , ∀m ∈M
to (5),1 the PSL-minimization based waveform design can be
further rewritten as

min
Y

∑∑
m,m′∈M
m′ ̸=m

( ∣∣(((ejψm)TJ1D)⊙ ((ejψm′)HJ1D
∗))D∗J2

∣∣q
⊙ γT

)
12P−1 (6)

which is an unconstrained optimization problem with respect to
ψ that consists of all the phase values of waveform elements.

In order to solve (6), we employ the idea of finding a proper
majorant for its objective, and then solve the resulting problem
by means of majorization-minimization techniques. Before
proceeding with (6), we present the following result.
Lemma 1. If a real-valued function f(x) with respect to
a real variable x is second-order differentiable, and there
is a constant L satisfying L ≥ ∥∇f(x)−∇f(z)∥/∥x− z∥,
∀x, z ∈ dom(f) with x ̸= z, then the following function

g(x) = f(x0) + (∇f(x0))
T(x− x0) +

L

2
∥x− x0∥2 (7)

can serve as a majorant for f(x) at any given x0 ∈ dom(f).
Proof. Using Lemma 1.2.3 of [21], we can obtain that∣∣f(x)−f(x0)−(∇f(x0))

T(x− x0)
∣∣ ≤ L

2 ∥x − x0∥2, which
leads to the fact that f(x)− f(x0)− (∇f(x0))

T(x− x0) ≤
L
2 ∥x − x0∥2, thereby enabling g(x) ≥ f(x), ∀x ∈ dom(f),
g(x0) = f(x0), and ∇g(x)|x=x0 = ∇f(x)|x=x0 to hold. The
proof is complete.

1Here, the exponential function ej(·) is applied to a vector argument, whose
calculation is conducted in terms of each element of the input vector. The
same type of operations for ℜ{·}, ℑ{·}, and | · | is used in the paper.
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Let us denote the objective of (6) as ζ(ψ), which is to be
used in the following. To apply Lemma 1 to ζ(ψ) for the
elaboration of its majorant, we need to determine its gradient
and to find the constant L which is desired to be easily obtained.
Toward this end, we present the following results.

Lemma 2. The gradient of ζ(ψ), denoted by ∇ζ(ψ), can be
obtained as ∇ζ(ψ) = [∇1ζ(ψ)

T, · · · ,∇Mζ(ψ)T]T, whose
m-th component is given as follows

∇mζ(ψ)= 2q

M∑
m′=1

ℑ
{
J1D

(
D∗J2(r

∗
m,m′ ⊙|rm,m′ |q−2⊙ γ)

⊙
(
DJT

1 e
jψm′

))
⊙ e−jψm

}
(8)

with ψm ∈ RP×1 (or ψm′ ∈ RP×1) being the m-th (or m′-th)
phase vector that has been defined at the beginning of Sec. II

Proof. Due to the fact |rm,m′ |2 = ℜ{rm,m′}2 + ℑ{rm,m′}2,
we can expand ζ(ψ) and express its gradient with respect to
the m-th phase vector as

∇mζ(ψ) = q

M∑
m′=1

(
ℑ
{
D{e−jψm}J1D

∗D{DJT
2 e

jψm}

D∗J2

}
D{ℜ{rm,m′}}−ℜ{D{e−jψm}J1D

∗D{DJT
2 e

jψm}
D∗J2}D{ℑ{rm,m′}}

)
D{γ⊙|rm,m′ |q−2}12P−1, (9)

which can be further rewritten as (8) via the facts that
ℑ
{
D{e−jψm}J1D

∗D{DJT
2 e

jψm}D∗J2

}
D{ℜ{rm,m′}} −

ℜ{D{e−jψm}J1D
∗D{DJT

2 e
jψm}D∗J2}D{ℑ{rm,m′}} =

ℑ{D{e−jψm}J1DD{D∗JT
2 e

−jψm}DJ2D{rm,m′}} and
D{rm,m′}D{γ ⊙ |rm,m′ |2}12P−1 = rm,m′ ⊙ |rm,m′ |2 ⊙ γ.
The proof is complete.

Lemma 3. The following quantity

L(ψ)= 2qmax
m

{∣∣∣∣(4P − 2)(q−1)
∥∥∥∥ M∑
m′=1

ℜ
{
|D{e−jψm}J1D

D{D∗JT
2 e

−jψm}DJ2|2D
{
γ⊙|rm,m′ |q−2

}
12P−1

}∥∥∥∥
∞

−
M∑

m′=1

ℜ
{
J∗
1D

∗(D∗J2(r
∗
m,m′ ⊙ |rm,m′ |q−2⊙γ)

⊙(DJT
1 e

jψm′ )
)
⊙ e−jψm

}
+

2qγq
0P

2q−1

(2P − 1)q−1

∣∣∣∣} (10)

ensures g(ψ)|L=L(ψ) to majorize ζ(ψ) at any given ψ(k),
where g(ψ) is constructed by (7) of Lemma 1.

Proof. In terms of Lemma 1, the condition that Lemma 3 holds
is to show that L(ψ)≥

∥∥∇ζ(ψ+
)
−∇ζ

(
ψ−)∥∥/∥∥ψ+ −ψ−∥∥,

∀ψ+,ψ− ∈ dom(ζ) with ψ+ ̸= ψ−. Note that∥∥∇ζ(ψ+
)
−∇ζ

(
ψ−)∥∥∥∥ψ+ −ψ−∥∥ ≤ max

p′


∣∣∣∣∣∣

∂ζ(ψ+)
∂ψ+(p′)

− ∂ζ(ψ−)
∂ψ−(p′)

ψ+(p′)−ψ−(p′)

∣∣∣∣∣∣


= max
p′

{∣∣∣∣ ∂2ζ(ψ)

∂2ψ(p′)

∣∣∣∣} = max
{ ∣∣d{∇2ζ(ψ)

}∣∣ } (11)

where p′ is an index of the vector elements found by the
maximization on the right hand side of the inequality. Note
that the first inequality of (11) holds due to the fact that ∥a∥ ≤
∥b∥·max

p′
{|a(p′)/b(p′)|}, ∀a,b ∈ RMP×1 by enforcing a ≜

∇ζ(ψ+) − ∇ζ(ψ−) and b ≜ ψ+ − ψ−, respectively. The
subsequent (first) equality is obtained by means of the Mean
Value Theorem [22] with ψ(p′) being some phase value in
between ψ−(p′) and ψ+(p′), and the last equality simply
holds due to the definition of the Hessian matrix ∇2ζ(ψ) ∈
RMP×MP and its diagonal elements.

Let {∇2
mζ(ψ)}Mm=1 ∈ RP×P be the M block matrices on

the main diagonal of ∇2ζ(ψ). Based on (9), we can express
the diagonal of the m-th block ∇2

mζ(ψ) in the form as follows

d
{
∇2

mζ(ψ)
}
= 2q

M∑
m′=1

(
(q − 2)

∣∣ℑ{D{e−jψm}J1D
∗D{D

× JT
2 e

jψm}D∗J2D{r∗m,m′}
}
|2D

{
γ⊙|rm,m′ |q−4

}
12P−1

−ℜ
{
|D{e−jψm}J1DD{D∗JT

2 e
−jψm}DJ2|2D

{
γ

⊙|rm,m′ |q−2
}
12P−1

}
+ ℜ

{
|D{e−jψm}J1DD{D∗JT

2 e
−jψm}

×DJ2|2D
{
γ⊙|rm,m′ |q−2

}
12P−1

})
+

2q+1qγq
0P

2q−1

(2P−1)q−1 1P . (12)

Using (12), we can then enlarge the last term of (11) as

max
{ ∣∣d{∇2ζ(ψ)

}∣∣ } = max
m

{∣∣d{
∇2

mζ(ψ)
}∣∣}

≤ 2qmax
m

{∣∣∣∣(4P − 2)(q−1)
∥∥∥∥ M∑
m′=1

ℜ
{
|D{e−jψm}J1D

D{D∗JT
2 e

−jψm}DJ2|2D
{
γ⊙|rm,m′ |q−2

}
12P−1

}∥∥∥∥
∞

−
M∑

m′=1

ℜ
{
J∗
1D

∗(D∗J2(r
∗
m,m′ ⊙ |rm,m′ |q−2⊙γ)

⊙(DJT
1 e

jψm′ )
)
⊙ e−jψm

}
+

2qγq
0P

2q−1

(2P−1)q−1

∣∣∣∣} ≜ L(ψ) (13)

wherein the results
∑M

m′=1

∣∣ℑ{D{e−jψm}J1D
∗D{DJT

2 e
jψm}

D∗J2D{r∗m,m′}
}
|2D

{
γ ⊙ |rm,m′ |q−4

}
12P−1 ≤

∑M
m′=1ℜ

{
|D{e−jψm}J1DD{D∗JT

2 e
−jψm}DJ2|2D

{
γ ⊙ |rm,m′ |q−2

}
12P−1

}
have been used. The proof is complete.

Till now, using Lemmas 1, 2, and 3, we can write the
majorant for the objective of (6) as

g(ψ)=
L(k)

2
ψTψ +

(
∇ζ(ψ)|ψ=ψ(k)−L(k)

)T

ψ + const (14)

where the last sum component represents constant terms
irrelevant to ψ, which is therefore immaterial to optimization,
ψ(k) denotes the vector of phase values obtained at the last
(denoted by the k-th) iteration, ∇ζ(ψ)|ψ=ψ(k) is the gradient
of ζ(ψ) at ψ(k) obtained by Lemma 2, and L(k) ≜ L(ψ(k))
is obtained by (13). Therefore, ignoring the constant terms of
(14), we can rewrite the optimization problem (6) as

min
ψ

L(k)

2
ψTψ +

(
∇ζ(ψ)|ψ=ψ(k) − L(k)ψ(k)

)T

ψ (15)
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Algorithm 1 The proposed PSL-minimization based waveform
design via direct phase optimizations

1: Input: P , M , ψ(0), k ← 0
2: repeat
3: Calculate

{
∇mζ

(
ψ(k)

)}M

m=1
, L(k), and ψ(k+1)

via (16)-(18)
4: k=k+1
5: until convergence
6: Output: y = ejψ

(k+1)

which leads to the closed-form solution given by

ψ(k+1) = ψ(k) − 1

L(k)
∇ζ(ψ)|ψ=ψ(k) . (16)

Note that (16) essentially boils down to the regime of gradient
descent method with a proper step size equaling 1/L(k).2

The calculation of (16) can be reduced by the fast imple-
mentation of ∇mζ

(
ψ(k)

)
and L(k) using FFT, i.e.,

∇mζ
(
ψ(k)

)
= 2q

(2P )q

(2P − 1)q

M∑
m′=1

ℑ
{
G̃P

{
F−1

P

{
FP

{
ejψ

(k)

m′
}

⊙F∗
P

{
rm,m′ ⊙ γ ⊙ |rm,m′ |q−2

}}}
⊙F∗

P {e−jψ(k)
m

}}
(17)

L(k) = 2q
(2P )q

(2P − 1)q
max
m

{∣∣∣∣(4P − 2)(q−1)
∥∥∥∥ M∑
m′=1

G̃P {

F−1
P {FP {γ ⊙ |rm,m′ |q−2} ⊙ FP {zP }}}

∥∥∥∥
∞
−

M∑
m′=1

ℜ
{
G̃P

{
F−1

P

{
FP

{
ejψ

(k)

m′
}
⊙F∗

P

{
rm,m′ ⊙ γ ⊙ |rm,m′ |q−2

}}}
⊙F∗

P {e−jψ(k)
m

}}
+ (2P − 1)γq

0P
q−1

∣∣∣∣} (18)

where the fact
∑M

m′=1ℜ
{
|D{e−jψm}J1DD{D∗JT

2 e
−jψm}

DJ2|2D
{
γ⊙|rm,m′ |q−2

}
12P−1

}
= 4P 2

∥∥∑M
m′=1T

{
GP {γ⊙

|rm,m′ |q−2}, G̃P{γ⊙ |rm,m′ |q−2}
}
1P

∥∥
∞ has been used, and

zP ≜ [1T
P ,0

T
(P−1)×1]

T ∈ R(2P−1)×1. Hence, the overall
computational complexity of (16) is reduced to O(M2P logP ).
The corresponding procedures are summarized in Algorithm 1.

IV. SIMULATIONS

In this section, we evaluate the performance of our proposed
algorithm and compare it with algorithms ‘CAN’ [9], ‘MM-
WeCorr’ [10], ‘ISLNew’ [11], and ‘MM-PSL’ [15], respectively.
Throughout simulations, random phase values are generated
as initializations, and the same initialization is employed
to conduct comparisons. Moreover, we apply FFT to the
compared algorithms on the condition that they allow for
fast implementations. The stopping criterion is chosen as the
absolute PSL difference between two neighboring iterations
normalized by the initial PSL value.

2The same type of conclusions for the WISL-minimization based waveform
design can be found in [12].

0 200 400 600 800

Number of iterations

-10

-5

0

N
o
rm

a
liz

e
d
 P

S
L
 (

d
B

)

q=8

q=10

q=12

q=14

(a) Convergence speeds of our algo-
rithm: q = 8, 10, 12, and 14.

0 50 100

Number of iterations

-15

-10

-5

0

N
o
rm

a
liz

e
d
 P

S
L
 (

d
B

)

MM-PSL

CAN

ISLNew

Proposed

(b) Convergence speeds of the tested
algorithms: q = 3.

Fig. 1: The evaluation on the performance of convergence speeds.

Example 1: Evaluation on convergence speeds. We evaluate
the convergence speed performance of our proposed algorithm
in terms of normalized PSL values versus numbers of iterations.
Different orders q chosen from {8, 10, 12, 14} are tested to
show its effect on the convergence speed of our algorithm,
and the same order (q = 3) is used when comparing with
other algorithms. The TLOI is set to be [−19,−1] ∪ [1, 19],
and the tolerance for stopping iterations is set to be 10−7.
Corresponding results are shown in Fig. 1. It can be seen from
Fig. 1(a) that our proposed algorithm converges after iterations
for all tested orders, whose convergence speed becomes slower
when the order increases. For the comparisons with other
algorithms, it can be seen from Fig. 1(b) that our proposed
algorithm iterates to the lowest PSL value after convergence,
which has reached −17.05 dB. The algorithm CAN obtains
the worst PSL after convergence, which is about −13.33 dB.
Among the tested algorithms, ISLNew costs the least number
of iterations, but it obtains relatively higher PSL value. The
algorithm MM-PSL behaves the second best.

Example 2: Correlation evaluation. We compare normalized
auto- and cross-correlation levels for all algorithms that are
tested. The parameters M = 2, P = 128, and q = 3 are chosen,
and the TLOI is set to be [−127,−1]∪ [1, 127]. The tolerance
for stopping is set to be 10−9. Other parameters are the same
as used in the previous. It can be seen from Fig. 2 that our
proposed algorithm outperforms all the other algorithms that
are compared. The largest gap of the obtained PSL between
our proposed algorithm and the others is about 8.01 dB, while
the smallest gap is about 5.93 dB.

Example 3: PSL evaluation. We evaluate the PSL perfor-
mance in terms of the minimum and average PSL values
obtained after convergence, number of iterations, and time
consumption, wherein all the results are averaged over 50
independent trials. The code lengths chosen from the set
{512, 1024, 2048, 4096, 8193} are tested, and the TLOI is set to
be the same as in the second example. The tolerance parameter
is set to be 10−6. Other parameters are: M = 1 and q = 3.
The corresponding results are shown in Table I. It can be seen
that our proposed algorithm obtains the lowest minimum and
average PSL values for all the tested code lengths. The average
PSL values obtained by our proposed algorithm is about 1.198
dB, 12.079 dB, and 16.765 dB better than those obtained by
MM-PSL, ISLNew, and CAN, respectively. In addition, our
proposed algorithm shows the largest improvements on the
time consumption using the least number of iterations for the
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TABLE I: PSL performance of the algorithms tested versus different code lengths.

P = 512 P = 1024 P = 2048 P = 4096 P = 8192
Min.a Ave.b Iter.c Timed Min. Ave. Iter. Time Min. Ave. Iter. Time Min. Ave. Iter. Time Min. Ave. Iter. Time

MM-PSL 7.154 8.715 312 0.375 11.080 12.954 374 0.640 16.380 18.861 366 1.028 25.689 29.353 279 1.288 36.873 41.875 346 2.820
ISLNew 8.946 11.117 145 0.065 13.532 16.116 174 0.209 21.448 24.730 210 0.259 29.880 36.027 214 0.809 46.305 53.133 227 1.471

CAN 10.030 12.547 931 0.579 14.799 18.511 1217 1.501 22.455 26.936 1351 3.018 33.436 40.461 1734 7.399 49.726 57.819 2096 16.944
Proposed 7.098 8.231 119 0.076 10.911 12.659 122 0.195 16.177 18.839 152 0.216 23.950 28.155 184 1.004 35.549 41.054 241 2.448

a Min.: Minimum PSL value (in dB). b Ave.: Average PSL value (in dB). c Time: Average time consumption (in seconds). d Iter.: Average number of conducted iterations.
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Fig. 2: Comparisons on the auto- and cross-correlation levels of
waveforms generated by the tested algorithms.

tested code length P = 2048, which is approximately 4.759,
1.199, and 13.972 times less than the time consumptions of
MM-PSL, ISLNew, and CAN, respectively.

V. CONCLUSIONS

We have proposed an efficient algorithm for designing multi-
unimodular waveforms with low PSL toward any TLOI. The
generic PSL metric defined on the TLOI is formulated for
minimization via direct phase optimizations. Specifically, we
first convert the PSL-minimization based design to an lp-norm
based minimization problem. Then, we reformulate it into an
unconstrained optimization problem with respect to the phase
values of waveform elements, wherein the inherent waveform
property of constant envelopes and a DFT matrix are both
used. Our remaining contributions lie in deriving the complex
gradient of the unconstrained objective and elaborating its
majorant via a Lipschitz-constant related quantity which is
properly designed. A closed-form solution that updates the
phase values through iterations is obtained using majorization-
minimization techniques, which boils down to a gradient
descent regime. The fast implementation of our proposed
algorithm is also provided, whose performances have been
verified to outperform current state-of-the-art methods.
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