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Abstract—Integrated sidelobe level is a useful measure to
quantify robustness of a waveform-filter pair to unknown range
clutter and multiple closely located targets. Sidelobe suppression
on receive will incur a loss in the signal to noise ratio after
pulse compression. We derive a pulse compression filter that
has the greatest integrated sidelobe suppression possible for
a given acceptable signal to noise ratio loss. The solution is
given in a closed form, which can be adjusted using a single
parameter to chose between greater sidelobe or interference and
noise suppression. We verify the derived filter using simulations,
comparing it to other proposed mismatched filter designs. To
expand the robustness of the filter, we additionally investigate
noise uncertainty robustness. We derive two robustness measures
for noise uncertainty and analyze the performance through
simulation.

Index Terms—robust pulse compression, radar signal process-
ing, filter optimization, integrated sidelobe ratio

I. INTRODUCTION

When a reflected waveform is received at a radar system,
it is practically always accompanied by nuisances such as
interference. For succesful operation of a radar system, these
reflected waveforms must be sufficiently isolated from the
nuisances, both for detection and estimation purposes. As
such, the signal-to-interference-and-noise-ratio (SINR) is an
important metric when evaluating receive filter performance.

To realize high SINR for high performance after the receive
filter, pulse compression is traditionally used. Using (general-
ized) matched filters (GMFs) to compress a pulse into a main-
lobe, while the nuisances remain temporally uncompressed
creates a sampling instance with optimal SINR. This sampling
instance also results in optimal detectability [1]. However,
GMFs do not consider sidelobes.

These sidelobes can cause some performance issues, espe-
cially in detectability of reflected waveforms. The sidelobes
of strong reflected waveforms could mask weaker reflections,
resulting in missed detections. Even if the weaker reflection
is not masked, it still suffers from the presence of strong
sidelobes in the estimation performance. Similarly, strong side-
lobes can cause false alarms to occur during detection. When
considering multiple-input-multiple-output (MIMO) channels
and systems using multiple transmitted waveforms, the side-
lobe issues described earlier get worse. While the waveforms
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in a set used in a MIMO radar system are nearly orthogonal
to each other, there will inevitably be additional sidelobes
due to crosscorrelations between the different waveforms.
Luckily, single-output channel filter design methods are useful
in MIMO filter design as well [2]. We can categorize methods
to mitigate sidelobes as follows.

Firstly, a waveform can be designed that has an auto-
correlation function that is very similar to the Dirac delta func-
tion. Such waveforms have been researched extensively [3]–
[6]. Such waveforms are typically assumed to be received
by a GMF. While the GMF is optimal in terms of SINR as
discussed before, it does not have any guarantees on side-
lobe performance, although including known signal-dependent
clutter is commonly done. Because of the additional con-
straints/objectives in waveform design, such as peak-to-
average power ratio minimization and signal dependent clutter
suppression, performing the optimization might be challenging
to do in a real-time system.

Secondly, a mismatched filter (MMF) can be designed [2],
[6], [7]. An MMF is typically designed by taking a GMF
and changing it through tapering using window functions or
through an optimization procedure that reduces sidelobes at
the output of the filter at the cost of the mainlobe width. This
increase in mainlobe width can be seen as an SINR loss, and
some MMFs are therefore designed with a maximum SINR
loss constraint.

Finally, the two mentioned methods can be combined by
designing waveform-filter pairs [8]. Designing waveform-filter
pairs instead of a waveform and filter separately allows for
greater degrees of freedom in the optimization procedure.
However, such methods can be of high computational com-
plexity, making them more challenging to use in adaptive
systems.

In this work, we propose a method of obtaining an MMF for
a known waveform. The resulting MMF will be Pareto optimal
in terms of both SINR and weighted integrated sidelobe
ratio (WISR). We pose no constraints on the type of waveform,
making the method broadly applicable. We introduce our
signal model and problem formulation in Section II. The
filter design method will be derived in Section III. Recog-
nizing sidelobe suppression as a robustness measure against
unknown clutter, we look at further robustness to nuisances
in Section IV. In Section V, we show the performance of the
methods through simulations. We close with conclusions and
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suggestions for future work in Section VI.

II. SIGNAL MODEL AND PROBLEM STATEMENT

Consider a length-L target waveform as it arrives at a radar
receiver, including nuisances. The received signal frame when
the target reflected waveform arrives can be described by

y = D(ν)x︸ ︷︷ ︸
s

+n ∈ CL ,

where D(ν) is a diagonal matrix which applies a Doppler shift
ν to the transmit waveform x ∈ CL, and the nuisance vector
n can be comprised of different types of nuisances, mainly
interference and self-noise. We will consider n ∼ CN (c,R),
where c is a vector collecting the clutter and R ∈ RL×L.
We do not explicitly include the complex value scaling of the
target’s radar crosssection in our model, since, as we will see
in Section III, a phase shift does not change the filter, and
we can freely adjust the SINR in simulation by changing R.
For the remainder, we assume s to be known. In reality, one
would design a filter bank for multiple Doppler shifts or use
prior information, for example.

First, we would like to design a non-zero receive filter
w ∈ CL which, when applied to y, minimizes both SINR
and WISR.1 Second, we want to investigate the effect and
mitigation of noise uncertainty.

We define the SINR and WISR as

SINR =

∣∣wHs
∣∣2

wHRw
, WISR =

WISL

|wHs|2
, (1)

where |·| is the absolute value function and the weighted
integrated sidelobe level (WISL) is given by

WISL =

L−1∑
l=1−L
l ̸=0

kl|rws(l)|2 , (2)

where rws(l) is the cross correlation between the receive filter
and transmit waveform at discrete lag index l and kl is the
associated weight. We can reformulate the WISL to make
further derivations more convenient:

WISL = wHS̃H
c WS̃cw , (3)

where W is a diagonal matrix containing all the weights kl,
and S̃c is a convolution matrix based on s with its middle row
removed such that (2) and (3) are equal.

When the weights are chosen according to the clutter
powers, the matrix S̃H

c WS̃c can be seen as a clutter sample-
covariance matrix for clutter with the same Doppler shift
as the target. This fact can be used to do targeted clutter
suppression using the mismatched filter that we are about
to propose, in addition to suppressing unknown clutters and
sidelobes in general by adding a constant term to all diagonal
elements of W together with the known clutter responses.
Alternatively, the constant diagonal terms can instead be
chosen to be variable based on known clutter positions, to

1Note that s can be zero-padded to allow the design of a longer filter.

account for possibly migrating clutter. One can additionally
generate variants of the matrix S̃H

c WS̃c for multiple Doppler
shifts, which allows minimization of sidelobes for different
Doppler shifts. For brevity we will only show results for
S̃H
c WS̃c.
Our first problem is to find a filter w such that it maximizes

SINR and minimizes WISR:
min
w

f1(w) =
wHS̃H

c WS̃cw

|wHs|2

max
w

f2(w) =

∣∣wHs
∣∣2

wHRw
.

(4)

III. CLOSED-FORM PARETO-OPTIMAL FILTER

The problem formulated in (4) contains two objectives that
are conflicting. As such, there are an infinite number of Pareto-
optimal solutions, which we cannot order in terms of overall
optimality. To deal with this, (4) can be scalarized to obtain
a single objective function for which we can find an optimal
value. While many scalarizing functions exist, in our case it
suffices to consider a straightforward weighting function. That
it indeed suffices will be shown in Section V.

Before we apply our scalarization, we rewrite f2(w) to be
a minimization by using f−1

2 (w) as our new function, which
is permissible since neither nominator nor denominator should
reach zero2. This results in

min
w

wHS̃H
c WS̃cw

|wHs|2

min
w

wHRw

|wHs|2
.

(5)

Recognizing that the two numerators in (5) are equal, we
scalarize the cost function to

min
w

wH
(
αS̃H

c WS̃c + (1− α)R
)
w

wHssHw
, (6)

where 0 ≤ α ≤ 1 is a parameter to decide the importance of
SINR versus WISR. For different α values, (6) can give us all
Pareto solutions of (4) and (5). The setting α = 0 will result
in the GMF, while α = 1 gives a filter with the greatest WISL
suppression. Setting α = 1

2 and chosing weights according
to the clutter powers results in a filter optimally suppressing
known clutter and noise, equivalent to the filters used in [9].

The expression in (6) can be further reformulated by nor-
malizing the output signal power. Defining

B = αS̃H
c WS̃c + (1− α)R , (7)

we can rewrite (6) as

min
w

wHBw

s.t. wHs = 1 .

This has a closed form solution, which is given by

w =
(
sHB−1s

)−1
B−1s . (8)

2There will always be at least some self-noise present, and we should never
be interested in wHs = 0.
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IV. NOISE COVARIANCE UNCERTAINTY

In the previous sections, we have assumed that we have
access to R, the noise covariance matrix. In practice, this will
not be true and only an estimate of the true covariance is
known, which we will call R̂. This estimate will change over
time, due to the variance of the estimation method, which
means we should be prepared to deal with uncertainty when
designing our filters. In the next few sections, we will go
through a few measures of robustness to handle the noise
covariance uncertainty. For simplicity, we focus in this section
only on noise suppression and neglect sidelobe suppression.
In both of the following sections, we aim to find a matrix to
replace R in (7) to add noise uncertainty robustness to the
filter.

A. Worst-case Optimization

To design a robust filter, we can choose to use a minimax
approach and find the worst case covariance matrix, Rl. This
minimax problem is described by

min
w

max
Rv∈V

wHRvw

s.t. wHs = 1 ,

where V , which should be a subset of the set of L×L positive
definite (PD) matrices, is the set in which we expect the true
R to lie. According to the minimax theorem there exists a
saddle point for this problem when the sets in which w and Rv

lie are compact convex sets, and the cost function is convex-
concave in w and Rv . Alternative conditions for the existence
of a saddle point solution for the SINR maximin problem
can be found in [10]. Since we can choose V to be compact
and closed, these conditions hold and we can exchange the
optimization order, and use the closed form solution of w
given Rv to eliminate that variable from the optimization,
which results in

min
Rv∈V

sHR−1
v s ,

which is a convex optimization problem [11, Example 3.4].
Solving this problem using off-the-shelf convex solvers, we

can find the worst-case Rv , Rl. When we use Rl to make
our filter wl =

(
sHR−1

l s
)−1

R−1
l s, we obtain the following

relations due to the saddle point property:

SINR(w,Rl) ≤ SINR(wl,Rl) ≤ SINR(wl,Rv) .

Now that we have a method of finding the filter that
optimizes the worst-case scenario, we need to design an appro-
priate V . By the distribution of R̂, we can define confidence
intervals with respect to where we may expect R to lie. If
we assume that the noise-plus-interference is described by a
multivariate circularly-symmetric complex Gaussian, then a
sliding window estimate of its covariance matrix is Wishart
distributed if N ≥ L, where N is the size of the sliding
window. The Wishart distribution allows us to find the variance
of the elements of R̂, which we can use to define our

confidence intervals. Given those intervals for each element
of the covariance matrix, we formulate

min
Rv∈SL++

sHR−1
v s

s.t. Rmin ≤ Rv ≤ Rmax ,
(9)

where SL++ is the set of real L × L PD matrices, the matrix
inequalities are element-wise, and Rmin and Rmax are the
lower and upper bound of our chosen confidence interval,
respectively.

A norm constraint can also be used to define V [12], [13]:

min
Rv∈SL++

sHR−1
v s

s.t.
∥∥∥R̂−Rv

∥∥∥2
2
≤ c ,

(10)

where c is a positive parameter to determine the allowed
distance between the covariance estimate and the worst-case
covariance. This formulation has the immediate benefit of
having a closed-form solution [10], [12], namely Rl = R̂+cI .
We can use the same confidence intervals we used earlier to
find an appropriate value for c, so we can compare the two
approaches fairly.

B. Minimizing Probability of High Output Noise Power

Another way of designing a robust filter, instead of op-
timizing worst-case performance, would be to minimize the
probability of false alarm due to noise. We may minimize the
probability of the output noise power exceeding a threshold β
and find the w that solves

max
w

P
(
wHR̂w ≤ β

)
s.t. wHs = 1 .

(11)

If we assume, like before, that R̂ is Wishart distributed, then
wHR̂w

(
wHVRw

)−1
is chi-squared distributed for any non-

zero w, where VR is the scale matrix of R̂ [14]. We can now
start deriving our cost function, the CDF of wHR̂w which
will be Gamma distributed. The random variable wHR̂w ∼
Γ
(
1
2N, 2wHVRw

)
has a CDF given by

P
(
wHR̂w ≤ β

)
=

1

Γ
(
N
2

)γ(N

2
,

β

2wHVRw

)
,

where

γ

(
N

2
,

β

2wHVRw

)
=

∫ β

2wHVRw

0

t
N
2 −1e−t dt .

Now that we have obtained the CDF of our random variable,
we can rewrite (11) equivalently as

max
w

∫ β

2wHVRw

0

t
N
2 −1e−t dt

s.t. wHs = 1 .

(12)

Since t
N
2 −1e−t is non-negative, the maximization of the

cost in (12) boils down to making the upper bound as large
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as possible. Since we assume VR to be positive-definite, we
may finally rewrite (12) to

min
w

wHVRw

s.t. wHs = 1 .

Since VR is given by NVR = E
{
R̂
}

= R, this leads
to the conclusion that the GMF is optimal in minimizing
the probability of output noise power larger than β, for any
positive β.

V. NUMERICAL RESULTS

Here we present a number of simulations verifying the
performance of the proposed filter and comparisons to other
filters from literature. We first discuss some of the other
filter methods, then we give an overview of the simulation
parameters before we finally present the numerical results.

A. Benchmark Filter

As a benchmark, we implement the filter described in [2].
This method computes the least-squares estimate of the desired
filter output, d, which describes a discrete Dirac delta function.
The filter that produces this least-squares solution is given by
w =

(
SH
c Sc

)−1
SH
c d, where Sc is a convolution matrix built

from s. Note that this filter is optimal in terms of integrated
sidelobe ratio (ISR). To obtain filters that balance sidelobe and
noise suppression, [2] proposes instead to perform a gradient
descent method, initialized by the GMF and with iterations
given by

w(n+1) = w(n) − µ
(
SH
c Scw

(n) − SH
c d

)
,

where µ is the stepsize. It is claimed that intermediate itera-
tions of this gradient descent procedure are filters that perform
a balance between sidelobe and noise suppression, if µ is
sufficiently small.

B. Simulation Parameters

The parameters that are used in the simulations, unless
stated otherwise, are: 0 ≤ α ≤ 1, W = I , SINR = 0dB
at the input of the filter, a critically sampled linear frequency
modulation waveform, and L = 255. Lastly, for the realization
of n we use white noise and colored noise. When colored
noise is used, the colored to white noise ratio is 40 dB and the
interference is an auto-regressive function given by the transfer
function H(z) =

(
1− 1.5z−1 + 0.7z−2

)−4
[15, Chapter 13].

C. Results

In Fig. 1, we show the Pareto figure of the cost function in
(6) and the method described in Section V-A. In Fig. 1a we
can see the our method always performs at least as well as the
one proposed by [2]. The dotted segments indicate non-Pareto
optimal points in the optimization. The winding path of the
convergence of [2]’s method in Figs. 1a and 1b would not
necessarily be an issue in practice, since a log of the path
can be kept to choose a desirable operating point. This is
unnecessary for our proposed method.
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(a) Filter performance in the presence of exclusively white noise and all
sidelobes weighted equally.
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(b) Filter performance in the presence of colored noise and all sidelobes
weighted equally.
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(c) Filter performance in the presence of white noise and sidelobes beyond
42 not weighted.

Fig. 1. Performance of the possible optimal solutions and comparison filters
in the presence of two types of noise. Indicated SINR is relative to the output
SINR of a GMF. Dotted lines indicate intermediate results which are worse
in both metrics compared to the other intermediate results.

We see in Fig. 1b that our proposed method achieves lower
SINR losses for given ISRs compared to [2]’s method. We
can guarantee that these SINR losses are the lowest possible
for different ISRs, because we generate all Pareto optimal
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Fig. 2. Filter output SINR for the three different filters. Plotted are the SINR
to the best-case, true, and worst-case noise covariance matrix. L = 16

solutions of (4).
Figure 1c shows the performance when only a limited

number of sidelobes are suppressed, instead of all. The pro-
posed method again performs better or equivalently to the
benchmark. While it may seem that more sidelobe suppression
can be attained for no more SINR loss, one should recall that
this may lead to aggregiously high sidelobe levels outside of
the weighted range. In practice, the sidelobes outside of that
range will have small weights assigned to them in order to
prevent the sidelobes to become too excessive.

In Fig. 2, we see the performance differences of a GMF and
the two robust filters described in Section IV-A, for L = 16.
The GMF is labelled ‘Nominal’, the filter obtained through
(9) is labelled ‘Box Constrained’ and we labelled the filter
from (10) as ‘Norm Constrained’. We see that even though
the worst-case performance of the constrained norm and box
constrained filters are better, the difference is small. On the
other hand though, the performance related to the nominal
covariance matrix is heavily affected. In both cases though,
(9) slightly outperforms (10), which is to be expected, given
the smaller feasibility region based on the assumed statistics.

VI. CONCLUSIONS

We have proposed a method to obtain all Pareto optimal
radar receive filters with maximum SINR and minimum
WISR. The solution exists in closed form and all Pareto
optimal solutions can be found by sweeping a single bounded
parameter. Furthermore, the method allows arbitrary weighting
of the sidelobes, which enables it to handle known clutter.

We have investigated robustness not only to unknown
clutter, but also to noise process uncertainty. Our findings
however, summarised by Fig. 2, show that the improvements

to robustness come at a great cost to the expected performance.
We expect that this cost may be too high, and the gain negli-
gible, for many applications. Furthermore, in Section IV-B we
showed that minimizing the probability of high noise output
was equivalent to the GMF.

By jointly performing pulse compression and processing the
angle of departure, as described in [2], the receive filter can be
employed, without requiring any changes, in MIMO radar for
optimal suppression of WISL, given an acceptable SINR loss.
Additionally, it can be used to do Pareto-optimal noise and
sidelobe suppression on oversampled signals such as in [7].

As future work remains the application of the closed form
filter solutions in adaptive settings and considering robustness
to interference that is not similar to a circularly-symmetric
Gaussian distribution. Furthermore, clutter mitigation will be
more successful when considering waveform optimization, and
as such, it should be interesting to consider the application
of robust filters in joint waveform-filter design methods such
as [16].
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