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Abstract—A block diagonally structured affinity matrix is an
informative prior for subspace clustering which embeds the data
points in a union of low-dimensional subspaces. Structuring
a block diagonal matrix can be challenging due to the
determination of an appropriate sparsity level, especially when
outliers and heavy-tailed noise obscure the underlying subspaces.
We propose a new sparsity-aware block diagonal representation
(SABDR) method that robustly estimates the appropriate sparsity
level by leveraging upon the geometrical analysis of the low-
dimensional structure in spectral clustering. Specifically, we
derive the Euclidean distance between the embeddings of
different clusters to develop a computationally efficient density-
based clustering algorithm. In this way, the sparsity parameter
selection problem is re-formulated as a robust approximation
of target between-clusters distances. Comprehensive experiments
using real-world data demonstrate the effectiveness of SABDR
in different subspace clustering applications.
Index Terms—Block diagonal representation, subspace clustering,
spectral clustering, affinity matrix, clustering

I. INTRODUCTION
Determining an embedding so that the data points lie
in a union of low-dimensional subspaces is crucial in
many real-world problems such as in clustering [1–6],
supervised learning [7] and semi-supervised learning [8, 9]. In
particular, subspace clustering (SC) has numerous applications
e.g. motion segmentation [10, 11], face clustering [1, 3],
image segmentation [12] and community clustering in social
networks [13]. Motivated by its broad range of applications,
SC has been the subject of much research, which can loosely
be divided into four main categories, i.e., iterative [14],
algebraic [10, 15], statistical [11] and spectral clustering-based
methods [1–5, 16]. In recent years, the latter have attracted
increasing interest due to their simplicity and promising
performance [3, 4].
The first step of spectral clustering-based methods is to
compute an affinity matrix (see, e.g., [1–5, 17] for different
variations of affinity matrix construction). Block diagonally
structured affinity matrices constitute an informative prior,
that is frequently used (e.g., [2–4, 17]). A popular strategy
to construct a block diagonal (BD) models is to represent
the data as a linear combination of feature vectors while
regularizing the affinity matrix coefficients, e.g. with an ℓ1, ℓ2
or nuclear norm [2–4]. Recent methods apply mixed norms,
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such as, the elastic net, which have the advantage of providing
a tradeoff between sparsity and connectedness [4, 18]. A
major challenge for all these approaches is to determine
the appropriate level of sparsity which plays a crucial
role in SC performance. Different methods building upon
supervised learning algorithms [19, 20], similarity coefficients’
distribution [21], geometric interpretations [22], connectedness
[23] and eigenvalues [17] have been proposed; however, no
optimal approach exists, especially in the presence of outliers.
We propose a Sparsity-Aware Block Diagonal Representation
(SABDR) method to robustly estimate the appropriate level
of sparsity for SC. The proposed SABDR approach leverages
upon the geometrical analysis of the low-dimensional structure
in spectral clustering. In particular, the derived Euclidean
distances between the embeddings of different clusters are
utilized to construct the BD affinity matrix. Further, we
propose a computationally efficient density-based clustering
(Con-DBSCAN) algorithm, to obtain a robust estimate
of the between-clusters distances that are associated with
an available affinity matrix. Unlike the original DBSCAN
[24], by leveraging upon a new Theorem that decribes
the geometry of the embeddings, Con-DBSCAN determines
the neighborhood search radius around given points based
on their connectedness, therewith leveraging the derived
geometric information. This, in contrast to DBSCAN, enables
Con-DBSCAN to efficiently expand clusters with multiple
embedding vectors in a single iteration. The proposed
modification leads to a considerable speed-up without any
performance loss. Building upon our theoretic analysis,
we develop a regularization parameter [3] selection by
re-formulating the sparsity level selection problem as an
approximation of the target between-clusters distances.
Organization: Sec. II presents the motivation and problem
formulation while Sec. III is dedicated to the proposed
SABDR method. A performance benchmarking against state-
of-the-art methods using popular data sets is provided in
Sec. IV. Finally, conclusions are drawn in Sec. V.

II. MOTIVATION AND PROBLEM FORMULATION

A. Spectral Analysis of Block Diagonal Affinity Matrix

Let a data matrix X = [x1,x2, ...,xN ] ∈ RM×N with M
denoting the dimension and N the number of feature vectors
be representable as a graph G={V,E,W}, where V denotes
the vertices, E represents the edges, and W∈RN×N is a zero-
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Fig. 1: Spectral embedding according to the eigenvectors of
the Laplacian matrix L when K = 3.

diagonal symmetric affinity matrix that is computed from X by
choosing an appropriate similarity measure (see, for example,
[3]). Assuming that L ∈ RN×N denotes the nonnegative
definite Laplacian matrix, spectral clustering performs K-
means clustering on the eigenvectors associated with the K
smallest eigenvalues of the eigen-problem

Lyk = λkDyk, k = 0, ...,K − 1 (1)

with associated eigenvalues 0≤λ0≤λ1≤ ... ≤λN−1. Here, yk

denotes the eigenvector associated with the kth eigenvalue λk,
D ∈ RN×N is a diagonal weight matrix with overall edge
weights di,i=

∑
j wi,j on the diagonal and L=D−W.

Theorem 1. Let L ∈ RN×N be the Laplacian matrix
corresponding to a K block zero-diagonal symmetric affinity
matrix W ∈ RN×N in which every block k=1, ...,K is
associated to Nk (Nk ∈ Z) > 1 feature vectors and the
affinities outside the blocks are zero-valued. Further, let
Y=[y0,y1, ...,yK−1] ∈RN×K be the matrix of eigenvectors
associated with the K smallest eigenvalues of L. Finally,
let ei, the ith row vector of Y, denote the embedding
vector that represents the M -dimensional ith feature vector
xi in the reduced K-dimensional space. Assuming that the
eigenvectors are orthonormal, the Euclidean distance between
any embedding vector pairs ei and ej associated to distinct
blocks k and l is equal to ∥ei−ej∥2=

√
1/Nk + 1/Nl for

k ̸= l and i ̸= j.

Proof. See Appendix A.
Theorem 1 is illustrated in Fig. 1 for an example consisting of
K = 3 blocks where µk ∈ RK denotes the cluster centroid
corresponding to block k = 1,...,K. As can be seen, the
Euclidean distance between embeddings of distinct blocks is
a function of their block sizes. In the sequel, the geometrical
analysis of a BD affinity matrix (Theorem 1) will serve as a
target to robustly estimate the distance between clusters.
B. Motivation : DBSCAN for Robust Spectral Analysis
If the affinity matrix of the data is BD, spectral clustering
may provide excellent results. Furthermore, according to
Theorem 1, a BD affinity matrix will lead to densely
connected clusters in the embedding space. Hence, a density-
based clustering approach, such as, DBSCAN [24], is a
natural approach to achieve a BD structure. However, in real
world scenarios the data includes outliers and heavy-tailed
noise which may obscure the distance between embeddings
of different clusters. Therefore, beyond its computational
efficiency that has made DBSCAN very popular, we build
upon its intrinsic outlier detection ability to increase robustness
for spectral analysis. Fig. 2 illustrates this with an example
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Fig. 2: Robustness in spectral analysis.

of K= 3 clusters that are hidden in a matrix of corrupted
eigenvectors Ỹ = [ỹ0, ỹ1, ỹ2]. Even though an appropriate
level of sparsity provides densely connected clusters, the
outliers obscure the distance between different clusters as it
is shown in Fig. 2a. By contrast, as illustrated in Fig. 2b,
DBSCAN identifies the outliers and robustly estimates the
between-clusters distance information.
C. Problem Formulation
Given a dataset of feature vectors X ∈ RM×N , the aim of
this work is to robustly and efficiently find a K block zero-
diagonal symmetric affinity matrix W∈ RN×N to obtain a
vector of labels c∈ RN consisting cluster assignments of X
using the spectral information of BD affinity matrices.

III. PROPOSED METHOD
This section details the proposed SABDR method which
estimates a BD affinity matrix in three steps that are detailed
in the following sections.
A. Affinity Matrix Construction
Among numerous affinity matrix design methods such as [1–
5], this method adapts the BDR method in [3], in which
the proposed K-block regularizer promotes a nonnegative
symmetric matrix to be K-BD so that the spectral analysis
described in Section II-A is directly applicable.
Let W(m) and L(m) ∈ RN×N , respectively, be the
affinity and Laplacian matrix that are computed by
using as a regularization parameter pair pm=[pm,1, pm,2]

⊤

from a matrix of candidate regularization parameter pairs
P=[p1,p2, ...,pNp ]∈R2×Np . Assuming that for every pm

there exists a matrix of eigenvectors1 Y(m) ∈RN×K , the
following sections present the selection of an appropriate pm

based on robust spectral analysis of Y(m) with the proposed
Con-DBSCAN.
B. Block Size Estimation using Con-DBSCAN
1) Parameter Definition: ϵ: If follows from Theorem 1 that
there exists a specific level of sparsity that allows for an
embedding, such that, the distance between embeddings of
the same cluster is minimal while the distance between
embeddings of different clusters is maximal. This important
result implies that there exists a minimum neighborhood
search radius ϵ that will provide these highly dense clusters.
To provide a visual understanding, the geometric definition
of a minimum search radius is shown in Fig. 3. Considering
a pair of clusters, the two clusters are assumed to have a
maximum Nmax and a minimum Nmin number of samples

1If the obtained set is not orthonormal, the Gram-Schmidt algorithm [25]
can be used.
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Fig. 3: Examplary plot of ϵ definition.
based on the information that the maximum block size
results in the minimum distance from the origin and vice-
versa. Clearly, Nmax can achieve its greatest value for
Nmax = N − Nmin. Then, using Theorem 1, the minimum
ball can be simply calculated for the large cluster as
ϵ=

√
1/(N −Nmin)+1/Nmin−

√
1/Nmin.

2) Parameter Definition: Nmin: As the parameter ϵ is a
function of the minimum number of points Nmin, this section
discusses finding Nmin. To begin, DBSCAN assigns a sample
to be an outlier if its ϵ-neighborhood does not contain at least
Nmin neighbors which means that a large value of Nmin results
in assigning many samples as outlier. On the other hand, a
large value of Nmin increases the neighborhood search radius
which may result in assigning many samples into a big cluster
and the remaining samples as outliers. Therefore, Nmin must
be a reasonably small number which can be easily defined
if K is known. In particular, the parameter can be gradually
increased as long as the clustering results provide K clusters.
3) Con-DBSCAN Algorithm: For a matrix
E(m)=(Y(m))⊤=[e

(m)
1 , e

(m)
2 , ..., e(m)

N ]∈RK×N containing
embedding vectors associated with pm, the goal of this
section is to assign embedding vectors into mutually
exclusive clusters using the proposed Con-DBSCAN. As
in the original DBSCAN [24], the method starts with ϵ-
neighborhood computation of an unlabelled embedding vector
e
(m)
i ∈ E(m), i = 1, ..., N as

N (m)
i = {e(m)

j ∈ RK : ∥e(m)
i − e

(m)
j ∥2 < ϵ}. (2)

Here, N (m)
i is the ϵ-neighborhood set of e

(m)
i and e

(m)
j

is the jth embedding result with j = 1, ..., N and j ̸= i.
Similar to [24], Con-DBSCAN assigns e

(m)
i into a cluster

c(m) if its N (m)
i includes more neighbors than Nmin.

However, there is an important difference in how the neighbors
are included. While DBSCAN [24] must compute the ϵ-
neighborhood for every neighbor and iteratively expand cluster
c(m) with embedding vectors, using Theorem 1, Con-DBSCAN
expands the cluster c(m) in a single iteration, which leads
to a considerable speed-up without any loss of performance
compared to the original DBSCAN. More specifically, the
derived geometric information in Theorem 1 demonstrates
that the embeddings associated with connected nodes are
concentrated while being far apart from the embeddings
of unconnected nodes in the embedding space. Con-
DBSCAN exploits this geometric information by comparing
the connectedness of a candidate neighbor to that of the least
connected embedding in c(m) which are, respectively, defined
by

κ
(m)
cand =

∑

i∈c(m)

w
(m)
cand,i , (3)

Algorithm 1: SABDR-based SC
Input: X∈RM×N , P∈R2×Np , Nmin(See, Sec. III-B2),

K (Optional based on BDR method)
for pm = p1,p2, . . . ,pNp do
Affinity Matrix Construction
Obtain an initial affinity matrix W(m)∈RN×N, e.g. using [3].
Compute Y(m)∈RN×K using Eq. (1).
Block Size Estimation using Con-DBSCAN:
Calculate ϵ as described in Section III-B1.
while there exists an unlabelled embedding vector do
Select the first unlabelled embedding e

(m)
i and

compute the ϵ-neighborhood N (m)
i via Eq. (2).

Initialize the cluster label c(m).
if the number of ϵ neighbors > Nmin then
Expand cluster c(m) using Eq. (3) and Eq. (4).

else
Assign e

(m)
i as outlier.

end
end
Sparsity Level Estimation:
Calculate ∆̂

(m)
T and ∆̂(m) using Eq. (5) and Eq. (6).

Update the estimate based on Eq (7).
end
Obtain associated Ŷ(p̂) and perform K-means.
Output: A vector of estimated cluster labels ĉ

and
κ
(m)
min = min

{
κ
(m)
i =

∑

j∈c(m)

w
(m)
i,j

}
, (4)

where κ
(m)
cand denotes the connectedness of a candidate

neighbor embedding e
(m)
cand∈N

(m)
i , w(m)

i,j is the i, jth similarity
coefficient in W(m), κ(m)

i is the connectedness associated with
the ith embedding vector e

(m)
i , and κ

(m)
min is the minimum

connectedness in cluster c(m). Based on the embedding
idea that connected nodes are embedded closely [26], the
method expands clusters using all highly connected neighbors
∀κ(m)

cand ∈ N (m)
i , such that, κ

(m)
cand > κ

(m)
min. Then, it iterates

the ϵ-neighborhood computation on the unlabelled neighbors
and repeats the connectedness-based expansion until no new
neighbors that can be assigned to c(m) are found.

C. Sparsity Level Estimation
Let {N̂ (m)

1 , N̂
(m)
2 , ..., N̂ (m)

K } ∈ Z+ be the block sizes
associated with pm that have been estimated in Section III-B3.
Now, using Theorem 1, the components of the target between-
clusters matrix estimate ∆̂

(m)
T are determined by

∆̂
(m)
Tk,l

=

{√
1
N̂k

+ 1
N̂l

, if k ̸= l

0, otherwise
. (5)

where ∆̂
(m)
Tk,l

is the k, lth component of ∆̂
(m)
T that represents

the target Euclidean distance between cluster k=1, ...,K and
l=1, ...,K. Similarly, the components of the between-clusters
matrix estimate ∆̂(m) are computed by

∆̂
(m)
k,l =

{
∥µ̂(m)

k − µ̂
(m)
l ∥2, if k ̸= l

0, otherwise
, (6)

where ∆̂
(m)
k,l is the k, lth component of ∆̂(m) denoting the

Euclidean distance between kth and lth estimated cluster
centroids µ̂

(m)
k and µ̂

(m)
l ∈RK , respectively. Since for every
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Subspace Performances on ORL Data Set Subspace Performances on JAFFE Data Set

Min-Max Average Clustering Accuracy for Different Regularization Parameters Min-Max Average Clustering Accuracy

K SSC EnSC BD-SSC RKLRR IBDLR BDR-B SABDR SSC EnSC BD-SSC RKLRR IBDLR BDR-B SABDR

2 52.6 9 87.4 53.9 9 60.4 51.3 9 66.6 54.7 9 64.1 x 55.0 9 97.0 95.3 51.4 9 99.2 52.0 9 58.7 50.7 9 68.6 52.0 9 61.8 51.4 9 63.6 52.1 9 99.5 97.5
3 36.7 9 88.1 36.7 9 62.3 36.8 9 59.4 36.7 9 57.5 36.7 9 68.9 36.7 9 92.8 88.5 35.0 9 97.7 35.0 9 68.9 35.3 9 71.1 35.1 9 53.9 35.1 9 63.7 35.1 9 97.8 95.0
5 22.0 9 84.3 22.0 9 67.2 23.3 9 48.1 22.0 9 52.7 22.0 9 64.4 22.0 9 84.8 86.6 21.4 9 97.2 21.4 9 85.3 22.4 9 87.4 21.4 9 70.3 21.4 9 84.2 21.4 9 97.4 96.6
8 13.8 9 83.0 13.8 9 71.5 15.9 9 40 13.8 9 69.7 13.8 9 73.8 13.8 9 82.1 80.2 13.5 9 93.4 13.5 9 82.8 15.1 9 93.1 13.5 9 85.9 13.5 9 87.7 13.5 9 92.5 89.2
10 11.0 9 81.4 11.0 9 70.5 13.2 9 35.3 11.0 9 69.8 11.0 9 73.1 11.0 9 80.6 78.9 10.8 9 85.0 10.8 9 78.9 12.7 9 85.4 10.8 9 84.0 10.8 9 85.4 10.8 9 85.9 76.5

TABLE I: Face clustering performance of different BDR methods on ORL and JAFFE data sets. ‘x’ denotes the failed results.
Min-Max Average Clustering Accuracy for Different Regularization Parameters

K SSC EnSC BD-SSC RKLRR IBDLR BDR-B SABDR

2 52.2 9 93.8 52.4 9 62.8 51.1 9 71.8 52.5 9 60.9 52.2 9 68.8 52.7 9 96.6 95.2
3 35.0 9 88.3 35.0 9 65.0 35.4 9 67.8 35.0 9 52.7 35.0 9 67.4 35.4 9 91.2 83.3
5 21.0 9 85.5 21.0 9 74.8 22.3 9 69.5 21.0 9 53.7 21.0 9 70.6 22.1 9 88.4 83.2
8 13.1 9 79.9 13.1 9 76.7 15.3 9 72.2 13.1 9 66.2 13.1 9 70.6 14.3 9 81.3 73.3
10 10.5 9 76.3 10.5 9 73.5 12.8 9 70.2 10.5 9 65.7 10.5 9 67.9 11.6 9 76.8 70.3

TABLE II: Object clustering performance of different BDR
methods on COIL20 data set.

Min-Max Average Clustering Accuracy for Different Regularization Parameters

K SSC EnSC BD-SSC RKLRR IBDLR BDR-B SABDR

2 50.8 9 81.9 50.8 9 54.0 50.7 9 94.4 51.0 9 61.8 50.8 9 75.2 50.9 9 89.8 82.0
3 34.0 9 74.5 34.0 9 51.8 34.2 9 87.0 34.0 9 59.7 34.0 9 69.0 34.7 9 78.7 77.1
5 20.4 9 62.7 20.4 9 56.2 22.6 9 79.1 20.4 9 57.8 20.4 9 64.4 21.3 9 62.5 80.3
8 12.8 9 57.8 12.8 9 54.4 19.4 9 70.8 12.8 9 59.1 12.8 9 60.3 13.1 9 56.3 45.6
10 10.2 9 55.8 10.2 9 55.0 18.8 9 66.4 10.2 9 56.6 10.2 9 54.4 10.2 9 61.2 17.4

TABLE III: Handwritten-digit clustering performance of
different BDR methods on USPS data set.

pm there exists a distance matrix ∆̂(m), the appropriate
regularization parameter pair controlling the sparsity level can
be estimated as follows:

p̂ =argmin
pm∈P

∥∆̂(m)
T − ∆̂(m)∥F (7)

The proposed SABDR for SC is summarized in Algorithm 1.
IV. EXPERIMENTAL RESULTS

In this section, the SC performance of SABDR is benchmarked
against five state-of-the art affinity matrix construction
methods, i.e., SSC [1], EnSC [18], BD-SSC [2], BDR-B [3],
IBDLR [4] and RKLRR [5] using the real-world data sets
of face, object and handwritten digit images. The application
details are as follows.
1) ORL [27]: As in [4], 400 face images of 40 subjects are
resized to 32× 32 and X of size 1024× 400 is computed.
2) JAFFE [28]: Similarly, 213 images of 10 subjects are
resized to 64×64 pixels and X of size 4096×213 is obtained.
3) COIL20 [29]: X of size 1024 × 400, whose column
vectors contain 32 × 32 down-sampled images, is generated
by selecting 20 images randomly for every object.
4) USPS [30]: X with M = 256 and N = 500 is generated
by randomly selecting 50 handwritten digit images of size
16× 16 as feature vectors for every digit.
As in [3], performance analysis of every application
is conducted for an increasing value of K, e.g.,
K = {2, 3, 5, 8, 10} using 100 randomly selected subject
combinations. To reduce the cost, the feature spaces are,
respectively, reduced to 10, 8, 10 and 13 using Principal
Component Analysis (PCA), since using a larger feature space
did not provide significant improvements. For the competing
methods, the regularization parameters are manually tuned
on a grid of 50 values. Finally, spectral clustering [31] is
performed and the performance is summarized for the average
clustering accuracy p̄acc. The performance of SABDR is
analyzed for the default parameter choice Nmin=N/(2K),
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Fig. 4: Numerical results for different Nmin parameters.

except for K = 8 and K = 10 in Table III, where the
parameter was increased until it computes K distinct clusters
(see Sec. III-B2). A MATLAB implementation of SABDR is
available at: https://github.com/A-Tastan/SABDR.
Tables. I, II and III summarize the obtained results on face,
object and handwritten digit clustering, respectively. As can
be seen, SABDR in nearly all cases reaches a performance
close to, or in some cases even better than that of optimally
tuned competitors. This demonstrates its excellent sparsity
level estimation performance.
In addition to the SC performance analysis, it is interesting
to compare the computation time (t) of the proposed Con-
DBSCAN method to that of DBSCAN. To analyze t as a
function of sample size N , the data sets are generated by
randomly selecting an increasing number of samples for every
subject in COIL20 [29] and USPS [30], respectively. Then,
the original DBSCAN [24] and Con-DBSCAN are run using
the eigenvectors associated with the affinity matrices that are
obtained by manually tuning BDR-B [3]. As can be seen
in Fig. 4, the proposed method is considerably faster than
the original DBSCAN [24] which confirms that the derived
strategy of expanding the clusters efficiently with multiple
highly connected neighbors greatly reduces the number of
required ϵ-neighborhood search iterations.

V. CONCLUSION

The eigenvectors associated with the BD matrix are analyzed
to show the significance of the hidden between-clusters
distance information in the measure of an appropriate sparsity
level for SC. Based on the derived theoretical information,
we proposed SABDR which controls the level of sparsity
by robustly estimating the regularization parameter/s. To use
the available BD structure in the objective function, we
proposed an efficient density-based clustering method Con-
DBSCAN. SABDR is benchmarked against popular affinity
matrix construction methods and it reached similar or higher
performance than its optimally tuned competitors.

VI. APPENDIX : PROOF OF THEOREM 1
Based on the information that the K smallest
eigenvalues of the Laplacian matrix associated with

1597



the BD affinity matrix are zero-valued [31], the
associated orthonormal set of eigenvectors yields, i.e.

y0 = [

N1︷ ︸︸ ︷
±

√
1/N1, ...,±

√
1/N1,

N2︷ ︸︸ ︷
0 , ..., 0 , . . . ,

NK︷ ︸︸ ︷
0 , ..., 0 ]⊤

y1 = [ 0 , ..., 0 ,±
√
1/N2, ...,±

√
1/N2, . . . , 0 , ..., 0 ]⊤

...

yK−1 = [ 0 , ..., 0 , 0 , ..., 0 , . . . ,±
√

1/NK , ...,±
√
1/NK ]⊤

where yk ∈ RN is the eigenvector associated with the kth
zero-valued eigenvalue. The Euclidean distance between any
row vector of Y=[y0,y1, ...,yK−1] ∈RN×K associated with
different blocks follows as

√
1/Nk + 1/Nl.
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