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Abstract—We propose a novel technique for exploring the
complexity of multivariate time series (possibly with different
lengths) across multiple time scales using a new graph-based
approach. Our method, called multivariate multiscale permu-
tation entropy, MMPEg, incorporates the interactions between
channels by constructing an underlying graph for each coarse-
grained time series and then applying the recent permutation
entropy for graph signals. This approach enables the analysis of
multivariate time series with varying lengths, providing insights
into the dynamics and relationships between different channels.

To address the challenge posed by noise in real-world data
analysis, we evaluate the robustness of MMPEGg to noise using
synthetic time series with varying levels of noise. Our results
show that MMPEg exhibits better performance than similar
multivariate entropy metrics.

We also apply MMPEg to study two-phase flow data, an
important industrial process characterised by complex and dy-
namic behaviour. Specifically, we process multivariate Electrical
Resistance Tomography (ERT) data and extract multivariate
multiscale permutation entropy values. The results indicate that
MMPEg characterises the flow behaviour transition of two-phase
flow by incorporating information from different scales and is
sensitive to the dynamics of different flow patterns. The noise-
robustness of MM PEg makes it a suitable approach for analysing
the complexity of multivariate time series and characterising two-
phase flow recordings.

Index Terms—dispersion entropy, complexity, graph signals,
entropy metrics, two-phase flow, multivariate time series

I. INTRODUCTION

Two-phase flow is a critical phenomenon in various in-
dustrial applications, including chemical processes, petroleum
exploitation, and nuclear engineering [1]. Despite extensive
research on two-phase flow, including theoretical and ex-
perimental studies employing mathematical approaches [2],
[3], and high-speed camera techniques [4], the complexity
and dynamic behaviours of the flow patterns, particularly in
the interaction between different channels in the multivariate
recordings, remain unresolved. Accurate characterization of
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two-phase flow can lead to improved efficiency, reduced costs,
and sustainable development [1].

Non-linear analysis metrics can be useful for studying
complex systems, such as two-phase flow. Univariate per-
mutation entropy [5], a computationally efficient non-linear
measure of complexity, has been employed for characterizing
various systems. Its performance under noisy conditions has
been investigated [6], and it has been used to distinguish
two-phase flow dynamics [7] and characterize autoregressive
processes [8]. However, most physical systems’ signals are
multivariate. Therefore, several univariate entropy metrics have
been extended to a multivariate setting, including multivari-
ate generalisations of sample entropy [9], dispersion entropy
[10], and permutation entropy [11], among others. Some
of these methods have been recently used to analyse two-
phase flow and characterize its behaviour [12]-[14]. However,
prior implementations of multivariate permutation entropy are
limited as they do not consider cross-channel information,
exhibit limitations in noise robustness and complexity capture,
particularly in the context of two-phase flow data.

Noise can impact the accuracy of multivariate entropy
metrics, leading to inaccurate values. Several techniques, such
as multivariate weighted permutation entropy [15], have been
proposed to address this issue. However, these multivariate
methods analyse each time series separately, leading to the loss
of cross-channel information and an increase in the number
of parameters used for entropy computation. To address these
limitations, we propose a multiscale multivariate permutation
entropy, MMPZE(, based on a general graph construction (and
not limited to the Cartesian graph product [16], which requires
equal length time series). Our method, MMPZEg, can identify
patterns in two-phase flow data that are not discernible through
traditional time series entropies or statistical analysis, making
it a valuable tool for the characterization of these systems.

Contributions: We introduce a multiscale algorithm for
analysing multivariate time series based on permutation en-
tropy for graph signals (PEg). We apply the algorithm to a
set of synthetic data and two-phase flow data, demonstrating
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that it outperforms univariate permutation entropy and classi-
cal multivariate permutation entropy. Our method, MMPEg,
considers the interaction between different data channels, is
robust to noise, and detects complexity at different scales of
the two-phase flow patterns. Furthermore, the generality of the
construction of the underlying graph allows for the treatment
of not only multivariate and multiscale time series but also
other types of data, such as irregularly sampled time series.
This includes channels with varying levels of importance (by
incorporating a weighted adjacency matrix) or channels with
unequal lengths, thereby enabling the application of PEg
to cases where this was not previously possible. Overall,
MMPEg presents distinct advantages over existing methods.
Its enhanced noise robustness, a critical attribute for real-world
data analysis, and sensitivity to diverse dynamics facilitate
here its application to differentiate multi-phase flow patterns,
achieving a notable improvement over previous methods.

II. GRAPHS AND PERMUTATION ENTROPY

This section presents the Cartesian graph product and the
permutation entropy for analyse graph signals, defined in [17].

Cartesian graph product. The Cartesian product of two
graphs G = (V,€) and G' = (V',€&’), denoted GOG', is
the graph defined by the vertex set: V(GOG') =V x V' =
{(v,v")|]v €V and v/ € V' }. Two vertices (v,v’) and (u,u’)
are adjacent in GOG' if and only if either v = u and v’ is
adjacent to v/ in G/, or v = v/ and v is adjacent to u in G.
The graph product is a useful structure to model multidomain
signals [18] and is the perturbation of a periodic graph [19].

Permutation entropy for graph signals (PEg). Let G =
(V,€) be a graph, A its adjacency matrix and X = {x;}!"_, be
a signal on the graph, PE( is defined in [16], [17] as follows:
1) For 2 < m € N the embedding dimension, L € N
the delay time and for all ¢« = 1,2,...,n, we define
Ut = e Lienia )% = W (AT X)i  where
Ni(i) = {j € V]itexists a walk on k edges joining ¢ and j } .
Then, we construct the embedding vector y; "~ € R™ given

by
L kL\m—1 L
R (R HINE (T

2) The embedding vector y;n"L is arranged in increasing order
and is assigned to one of £k = m! permutation (or patterns)
T1,72y ..., k.

3) For the distinct permutation, the relative frequency is
denoted by p(m1), p(m2), ..., p(mk). The permutation entropy
PEg for the graph signal X is computed as the normalised
Shannon entropy

m—1)L
oY

PEq = —@ le(m) lnp(m;) .

III. MULTISCALE MULTIVARIATE PERMUTATION
ENTROPY (MMPEG)

Time series from phase flow data contain multiple temporal
scale structures. A single scale can only assess the system’s
irregularity at a single temporal scale. Multiple scales need to

be analysed to understand the dynamics in the signals and to
describe the properties of its model. Here, we propose a non-
linear multivariate multiscale methodology based on graph
signals to analyse such data.

Let X = {x ;;1225? be a multivariate time series
with p—channels, each of length n, and I, be the graph of
interactions between channels. The MMPEg algorithm relies

on a three-step procedure:
1) Coarse-grained procedure. From the original multivariate
signal X, we derive multiple successive coarse-grained ver-
sions by averaging the time data points within non-overlapping
time segments of increasing length, € , referred to as the scale
factor. Each element of the coarse-grained time series,

U = {uf 10 e (1

where each S ; is calculated as:

i,j
i€

1
€
U; . = —
2,] € ::

t=(i—1)e+1

x5, forl<j<pandl<i<n,/e.

2) Graph construction associated to a multivariate signal.
For each coarse-grained multivariate U€ (Eq. 1), we construct
the graph Gy = (V, €) as follows:

o The vertex set V = {vf,j}jzl’Q""’p

1=1,2,...,[np/€e] *
o The edge set £ = & U &y where

& ={(vf;,v511,) [1<i<|ny/e] =1},
&= { (v;,jvvz,j) | (i’ k) € E(Ip) } .

3) PE for graph signals. Consider U¢ as a signal defined on
the graph Gue, i.e., US: V(Gue) — R given by v ; — uf ;.

Definition. The multivariate permutation entropy (MMPEg)
is defined as the permutation entropy PEq for the graph signal
U*€ defined on the graph Gy, i.e.,

MMPEg = PEg(U*) .

Some remarks of MMPEg are the following:

Coarse-grained procedure. The length of each coarse-
grained time series is e times shorter than the original one.
For ¢ = 1, we get the original series, i.e, U' = X.
We use this coarse-grained procedure for simplicity, however
other approaches to construct the coarse-graining in multiscale
entropy exist [20], [21].

Graph construction associated to a multivariate signal. As
an example of the construction, let X be a multivariate time
series with p = 4, ny = 6, ng = ng = 7, ng = 5 (Fig. 1.a)
and full interaction matrix, i.e., I, = K4 (Fig. 1.b), the graph
constructed in Sec. III.2 is shown in Fig. 1.c.

Alternatively, one could match the length of time series
by zero-padding to make them suitable for product graphs.
However, this approach introduces numerous artificial per-
mutation patterns, which can significantly influence entropy
values. Consequently, our method, which avoids this issue,
offers a more robust solution.

The graph product, a particular case. When the multivariate
signal X contains series with all equal length, then the
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Fig. 1: Graph structures.

previous constructions is the graph product. Formally, the
case when n, = n for all 1,2,...,p implies that Gy =

[n/e) 71, , where ?n is the directed path on n vertices
(Fig. 1.d). Such particular case was studied previously in [16].
Observe that P, has adjacency matrix A?n (size n X n), and
the graph I, has p vertices with adjacency matrix Ay, (size
p X p), then the adjacency matrix A?T o1, (size np x np) of

the Cartesian product of both graphs ﬁnDIp is given by
A? oI :A? L, +1,® Ay, ;

where ® denotes the Kronecker product of matrices and I,
denotes the n x n identity matrix.

Graph of interactions. If we consider I, = (), our method
leads to the multiscale multivariate permutation entropy previ-
ously presented in [11]. However, MMPEg uses information
on between channel interaction (represented in the graph I,)
and leads to a more robustness method in the presence of
noise, as we will see in the next section.

IV. ROBUSTNESS TO NOISE

To demonstrate the effectiveness of MMPEg, we analyse
the effect of additive Gaussian noise on its performance on
the Lorenz system. This system has important applications in
mechanics, biology, and circuit theory [22] and it is given by
the system of ordinary differential equations:

o =0y —a),
!
y =z(p—2)—y,
2 = xy — Bz
A simulation for the values p = 50,0 = 19 and 8 = 6,
with initial state * = —1,y = 0 and z = 1 is obtained. We

calculate the multivariate permutation entropy, considering two
graph structures, I3 the complete graph with 3 vertices, and
I} the graph with 3 isolated vertices, and we plot the entropy
values as a function of the scale factor e (see Fig. 2). To
be noted, that the graph I3 considers all interaction between
channels (MMPEg) while I} does not consider interaction
and therefore is the classical MMPE . In both graph structures,
the entropy values increase with the scale factor when noise is
not added. However, our MMPEg shows more stability to the
change of scale factor, and the complexity of the multivariate
system is more constant, while MMPE [11], [15] shows more

variability in its values, changing from no complexity at lower
scales to almost random behaviour at higher scales for the
same Lorenz system.

To demonstrate the robustness of the method, we add
white Gaussian noise to the multivariate signals defined by
the Lorenz system. Fig. 2 shows the effects of WGN on
multivariate multiscale MMPE and MMPEg for the Lorenz
system. The signal-to-noise ratio of WGN is set for all the
channels as 10dB, 20dB, 30dB, 40dB and 50dB, respectively.
The noise has low influence with both methods for scales
higher than ten. The influence of the noise is very important
for MMPE in lower scales, while the impact is smaller for
our algorithm, showing the robustness of MMPE.

s
R R B -

s R

——No noise and MMPE ——No noise and MMPE | |

-e-50dB -e-50dB

-%-40 dB -»-40 dB H
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Fig. 2: Entropy values when WGN is added.

Experimental results demonstrate superior performance of
MMPEqg over MMPE when noise is introduced to one,
two, or three channels. Furthermore, the addition of a fourth
channel consisting solely of noise to the 3-channel Lorentz
System does not significantly alter the entropy values. This
experiment, which we omit due to space constraints, attests
to the robustness of MMPEg. It is crucial to maintain all
channels without deletion when comparing entropy values
across different systems with an equal number of channels.

In next section, the robustness of MMPEg against noise is
validated using more challenging real-world data, specifically
two-phase flow data that contains several levels of noise.

V. FLOW ANALYSIS WITH MMPE¢

The two-phase flow experiment was carried out at Tian-
jin University [12], using Electrical Resistance Tomography
(ERT). Based on the principle that the conductivity of medium
differs, ERT collects boundary voltages between electrodes
placed around the pipe by applying electric currents to obtain
conductivity distribution of two-phase flow inside the pipe.
A constant electrical current of 50 kHz is adopted as the
exciting signal, and the data acquisition rate is 120 frames/s.
A 16—electrode ERT obtains 16 x 13 = 208 voltage data.
Given the redundancy in the measurements and similar to [23],
we extract feature vectors Vg; from each electrode to reduce
the dimension as follows: Vg, = Tlg, Z;L(Vij = Vijo)/Vijo
where V;; is the measure voltage value, V;;, is the V;; when
the pipe is full of water and 1 < R < 16. Finally, to
reduce the computational time, the 16 features vectors Vg; are
compressed into 4 time series, by average four Vg; electrode
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belonging to the same set group [12]. Then, we applied
multivariate multiscale permutation entropy to characterise the
two-phase flow.
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a) Time series of the four sets of electrodes (temporal information)

b) Graph structure

Fig. 3: a) Signals of 4 set of electrodes under annular flow and b) is the graph
modelling cross-channel interaction.

Two-phase flow series require preprocessing to eliminate
the noise, but our method is noise-robust as shown in Sec. IV
and has better results than classical MMPE. Hence we do
not need filtering to obtain a good characterisation of the
dynamic in phase flow. The noise causes only small variations
of entropy values in the lower scales; hence, we will work
with the original data without additional preprocessing.

For two-phase flow, gas and water were mixed. Water
velocity ranged from 0.4 m/s to 2.9 m/s and gas velocities
from 0.06 m/s to 5.64 m/s. The flow pattern observed with this
experiments and analysed are patterns known as Bubble flow,
Slug flow, Churn flow, and Annular flow. For the analysis, 89
experiments carried out under different conditions of flow rate
of gas and water and the typical length of each recording is
~1400 time samples. We perform the MMPEGg on the signals
of the four flow patterns, and plot the corresponding MMPEq
versus scale factor in Fig. 4. The coarse-grain process reduces
the time series length; consequently, the results show more
variability in high-scale factors.

0.8 T

0.7

-1Bubble
-+Slug
Churn

-+Annular
0.55 ! ! ! !
5 10 15 20 25

Scale factor

Entropy value

0.6

Fig. 4: Mean and standard deviation from MMPEg values of signals for
different flow patterns.

Entropy of flow patterns. The bubble flow shows the
highest MMPEg value in almost all scales compared with
the other three patterns. The presence of small bubbles [24]
in the regime produces complex time series on all four sets
of nodes. Because of gravity, the bubbles affect more the top
electrodes than the bottom. Then, the high complexity of the
time series and different response of the sensors leads to the
highest MMPEq values.

The signals acquired in slug flow show a periodic fluctuation
induced by the repeated occurrence of big gas bubbles. More-
over, the length of the gas bubble could be visually identified
in the signal because the four electrode sets are all affected by
the big gas bubbles flowing over the measured cross-section
and show high voltages resulting from the bubble. Hence, the
periodicity on temporal dimension and similar effects in all the
electrodes produce the lowest MMPEqg values for all scales.

The symmetrical distribution of the liquid film around the
pipe perimeter in the annular flow leads to the electrodes in
the annular flow showing similar fluctuations [25], but with
different amplitudes. The liquid film at the bottom of the pipe
is thicker than the top due to the gas velocity; see Fig. 3.
The complexity depends more on the temporal dimension
than the structural dimension. Hence, the values of MMPEg
overlap in low scales for slug and annular flow, making them
indistinguishably but resulting in less complexity than bubble
flow. For higher scale, MMPE is able to distinguish between
the slug, annular, and bubble flow.

Churn flow is the flow with more dynamic changes along the
scale values because it is a highly unstable flow [14]. In lower
scales, churn flow is similar to the slug and annular flow. The
presence of bubbles in the churn flow and the interaction and
coalesce with each other produces the highest entropy values
than slug and annular flow for scales between 3-14 and more
complexity than bubble for scales between 7-11 because of
the presence of no complete slugs and small waves. Periodic
waves are relevant for higher scales, decreasing the values of
MMPEg and making them similar to the annular flow.

Alternative graph structures: As each channel is repre-
sented by a vertex, we considered all possible non-isomorphic
simple graphs I, with four vertices, resulting in 11 graphs. Out
of these, five are disconnected (G1-G5) and six are connected
graphs (G6-G11). Our results showed that connected graphs
exhibit better performance in characterizing two-phase flow
than disconnected graphs, as they produce more stable entropy
values, with less variance and overlap between different phase-
flows across the multiscale values.

Disconnected Graphs Connected Graphs
. . @_IO 0»41 ZLI 3 I_O I:I Z jz
e oo oeoo—o @ e e—o ¢ «
G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11

Fig. 5: All non-isomorphic graphs with four vertices.

Disconnected Graphs. The performance of MMPEq is
more variable when the underlying graph is one of the five dis-
connected graphs, with Ip=G1 showing the best performance.
This is due to the lack of edges and equal consideration of
all signals. This scenario leads to the classical multivariate
multiscale permutation entropy, as shown in Fig. 6, where the
results in overlap across almost all multiscale values, making
it difficult to difference flow patterns.

Connected Graphs. Our results show that the complete
graph G11, the chosen default graph, outperforms the other
connected graphs, as G11 has the most edges (six) which
results in more interchannel dependencies being considered.
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Fig. 6: Entropy values when the graph is (a) G1 and (b) G9.

The multiscale incorporates time dependency and the graph
G11 considers variations between close vertices (sensors),
thereby capturing dynamic behaviour in a more effective
manner. The cycle graph G9 also has good performance,
clearly distinguishing bubble flow from others, but not annular
from slug flow (Fig. 6) because the information considered in
the graph being only boundary information (modelled by the
cycle graph) and inner information being missing (represented
by the complement).

This highlights the advantage of using the G1 or G11 when
there is no additional information and a small number of
channels. Additionally, both graphs are the only ones that do
not depend on which vertex corresponds to each time series.

When the graph is large, it becomes more appropriate to
consider information about the system. For example, if data
is compressed into 16, rather than four time series [23], the
complete graph will have 120 edges or channel dependencies,
making difficult detect the dynamics (Fig. 7(b)). In this case,
information such as the localization of the sensors, modelled
by a cycle graph with 16 vertices, will produce better results
(Fig. 7(a)) but increase the computational time.
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=
=
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Entropy value
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Fig. 7: Entropy values for 16 time series, with underlying graph: a) the
complete graph (K16) and b) a cycle graph (Cie).

VI. CONCLUSIONS

This paper proposes a multiscale methodology to analyse
multivariate time series (with unequal lengths) using the
concept of permutation entropy. Contrary to the previous
state of the art, our method allows for the consideration of
cross-channel interactions, thanks to the exploitation of graph
products and our recent formulation of permutation entropy for
graph signals. Our proposed approach provides a robust and
effective method for analysing the complexity of multivariate
time series, characterising complex systems (including two-
phase flow recordings) and make it a valuable tool in a range of
fields, including signal analysis and industrial process analysis.
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