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Abstract—Knowledge graphs (KGs), as essential ingredients
in many real-world applications, always contain a considerable
number of errors. KG error detection aims to find the triples whose
head entity, tail entity, and corresponding relation are mismatched.
Despite being urgently needed, existing KG error detection
methods lack generalizability. They mainly utilize supervised
information such as entity type or erroneous labels, but such
information is not often available in the real world. The challenges
in detecting errors in KGs are twofold. Firstly, KGs exhibit unique
data characteristics that distinguish them from general graphs.
Secondly, real-world KGs tend to be large, and labels are often
scarce. To bridge the gap, we propose a novel KG error detection
framework based on triple embedding, termed TripleNet. TripleNet
constructs a triple network by treating each triple as a node
and connecting them via shared entities. It then employs a Bi-
LSTM module to capture intra-triple translational information
at the local level and uses a graph attention network to gather
inter-triple contextual information at the global level. Finally,
it computes the suspicious score of each triple by integrating
its local and global-level information. Experimental results on
two real-world KGs demonstrated that TripleNet outperforms
state-of-the-art error detection algorithms with comparable or
even better efficiency.

I. INTRODUCTION

Knowledge graphs (KGs) have been regarded as an effi-
cient data structure for storing and organizing relations and
knowledge in many applications, including search engines [1],
recommender systems [2], and conversational agents [3].
KGs are directed graphs, in which each real fact has been
reformulated into a triple (i.e., a head entity, a relation, and a
tail entity). Due to the noises in crowdsourcing sources and the
imperfection of acquisition algorithms, errors were inevitably
introduced when constructing KGs. For instance, NELL has an
estimated precision of 74% [4], and YAGO3 has an accuracy of
95% [5]. Thus, it becomes increasingly crucial to automatically
and systematically detect errors in the KGs [6].

While there are extensive efforts on KG error detection, these
approaches mainly use supervised information. Specifically,
existing approaches can be mainly categorized into three types:
1) Entity-type-based: these studies take advantage of entity
types to perform clustering-based outlier detection [7], [8].
However, entity types are only partially (or even not) available
in real-world KGs. 2) Rule-based: these studies detect errors by
checking if a triple satisfies the pre-defined rules [9], so they are

limited by the coverage and quality of the rules. 3) Embedding-
based: some studies use this approach to build classifiers to
evaluate each triple, based on different features, including entity
categories, path features, out-degrees, as well as embedding
representations of entities and relations [10]–[12]. However,
labels are often not available for training those classifiers.
Therefore, these previous methods are not generalizable in
real-world applications.

Detecting errors in real-world KGs remains a challenging
task. On the one hand, KGs possess unique data characteristics,
such as directivity, diverse types of relations, and semantic
properties, which make their representation difficult. On the
other hand, real-world KGs are often large [4], [5], [13], but
with rare labels. To address these challenges, we claim that
detecting errors in KGs is equivalent to identifying triples
that have mismatched components and propose an effective
unsupervised solution - TripleNet. TripleNet constructs a Triple
Network, treating each triple as a node and establishing
connections among nodes through shared entities. This network
facilitates the integration of global information by considering
the inter-dependencies among triples. Then, it applies an
attention mechanism to the Triple Network to collect the
contextual information of the target triple from its neighbors.
Finally, unsupervised error detection is performed based on
local dissimilarity and global inconsistency of triples.

We aim to answer three research questions: (Q1) How
effective is the proposed TripleNet compared with the state-of-
the-art methods in detecting errors on KGs? (Q2) How efficient
is TripleNet compared with anomaly detection baselines? (Q3)
How much does each component of TripleNet contribute to its
performance? Our main contributions are as follows:

• We present a novel global view of KGs, i.e., Triple Network,
which helps represent the contextual information of triples.

• We propose an error detection framework on KGs, TripleNet,
which employs a local dissimilarity and global inconsistency.

• Experimental results validate the effectiveness of TripleNet
compared with state-of-the-art KG error detection methods.

II. PROBLEM STATEMENT

In this section, we introduce the notations and the problem
of error detection on knowledge graphs that we target to tackle.
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Fig. 1: The proposed TripleNet framework. TripleNet uses a Bi-LSTM layer to embed the local translation structure within each
triple to obtain the local representation x, and an attention mechanism to embed the triple network globally to obtain the global
representation z. The error detection is performed based on both local representation x and global representation z of triples.
Eventually, a suspicious score could be obtained for each triple.

Notations: We use an uppercase bold alphabet to denote a
matrix (e.g., W) and a lowercase bold alphabet to represent
a vector (e.g., x). The transpose of a matrix is denoted as
W⊤. We use ∥x∥2 to represent the ℓ2 norm of a vector. The
operation x = [h; r; t] denotes concatenating column vectors h,
r, and t into a new column vector x.

Let G = {E ,R} denote a knowledge graph that contains n
triples, where E and R denote the sets of entities and relations,
respectively. Each triple is composed of a head entity h, a
relation r, and a tail entity t, represented as (h, r, t). We
construct a triple network T , by treating each triple in G
as a node in T , through the connections of sharing (head
or tail) entity. The relation set in T can be represented as
R′. We embed the local translational structure into a basic
triple embedding x by concatenating the bidirectional hidden
state sequences output from a Bi-LSTM model. The basic
embedding of the jth neighbor of the anchor triple is denoted
as xj . And the final triple embedding is z. The suspicious
score function is defined as fs(·).

Since entities naturally exist in KGs, we define the error
on a KG as a mismatch of the head entity, tail entity, and
the corresponding relation. For example, (Elon_Musk, CEO,
Paypal) is a false triple, though Elon_Musk and Paypal are
correct entities. This implies that the errors do not originate
from a singular entity or relation but from the mismatch of
three components. Given the above notations and definitions,
we formally define the problem of error detection on KGs as:

Given a knowledge graph G = {E ,R}, our goal is to design
an end-to-end framework that takes the KG as input and
returns a rank of all triples with their suspicious scores, i.e.,
the possibility of being an error. The performance of error
detection is measured by both Precision@K and Recall@K.

III. THE PROPOSED TRIPLENET FRAMEWORK

We elaborate our proposed framework in Figure 1. The
Triple Network is constructed to better represent the contextual
information of triples in a KG. A triple in the original KG is

regarded as a node in the Triple Network, and a connection
exists between two nodes if there is a shared (head or tail)
entity between the corresponding two triples. The following
subsection elaborates TripleNet model for error detection.

A. Translational-based Triple Representation

Given an anchor triple (h, r, t) in G, the core idea behind the
knowledge graph embedding approach is to define a mapping
function f(g(·)), that maps the input feature vector into low-
dimensional embedding space. The distinctions between various
embedding-based methods rely on their way of determining
f(·) as well as the loss function [14], [15]. This method is not
applicable enough since it only measures the inner sequential
error within a triple instead of the entire KG. A naive solution
is to adapt pooling methods or concatenation operations.
However, they may result in suboptimal representation in
practice since they ignore the direction of knowledge graphs,
e.g., the translational or sequential structure inside a triple.
Therefore, we employ a bidirectional long short-term memory
(Bi-LSTM) [16] network. Assume xh, xr, and xt indicate
the final output of the Bi-LSTM, then we can obtain the
triple representation x = [xh; xr; xt]. We notice that in our
experiment, the output triple embedding x can well capture the
translational/sequential structure of the input triple, thanks to
the powerful sequential module Bi-LSTM.

B. Contextual Aggregation via Triple Network

The global structure/neighborhood is another vital char-
acter in understanding the connectivity relationships among
triples [17], [18], which has been leveraged by several efforts in
recent years [15]. The key assumption behind these methods is
that the connected triples that share the same entity are always
semantically relevant, and thus the representation of a target
triple can be aggregated from its neighborhood recursively.
Motivated by the success of previous efforts [15], we derive
the global inconsistency to determine the suspicious propensity
score for the anchor triple. To be specific, let x denote an
embedding vector of an anchor triple in the Triple Network,
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and {x1, x2, · · · , xm} indicates the corresponding embedding
vectors of neighborhood triples, in which m is the number of
neighbors. Then we need to obtain the context triple embedding
z of the anchor triple using a readout function denoted by
z = readout({xj}mj=1).

We follow the work [15], [19] to implement the readout
function with attention layers due to its ability to selectively
aggregate messages from neighborhood triples. To better reduce
the weights for abnormal neighboring triples, we perform self-
attention [19] on neighborhood triple embeddings, and the
attention coefficients are computed by a shared attentional
mechanism a : Rd′ ×Rd′ → R as: ej = a(Wcx,Wcxj), where
ej indicates the importance of jth neighbor to the target triple,
and Wc ∈ Rd′×d is the weight matrix. After that, we apply
a softmax function to make attention coefficients comparable:
αj =

exp(ej)∑m
k=1 exp(ek)

, where αj is the normalized attention score
of the j-th neighbor towards the target triple. Once obtained,
the context triple embedding is calculated via a non-linear
combination of the neighboring triple embeddings:

z = σ

 m∑
j=1

αjWcxj

 , (1)

where σ(·) denotes a sigmoid activation function. In our
experiments, we found that the single-head attention has already
achieved a satisfactory performance, so we do not consider the
multi-head version for simplicity.

C. Joint Optimization and Error Detection

In this section, we illustrate how to define an effective error
detector for knowledge graphs based on local self-contradiction
and global neighborhood inconsistency of a triple.

1) Local Dissimilarity: We define a dissimilarity function
to check the self-contradiction within the triple. Many KG
embedding algorithms have developed such functions to model
the translational structure for better learning embeddings [14],
[20], [21]. In our method, we take a simple squared Euclidean
distance [14] as a dissimilarity function. To better capture the
sequential nature of a triple, we utilize the hidden representation
of Bi-LSTM (xh, xr, xt), rather than the initial entities and
relations embeddings (h,r,t) as in most existing methods, to
explicitly compute the reconstruction loss. Specifically, the
local dissimilarity is computed as follows:

dlocal(h, r, t) = ||xh + xr − xt||2, (2)

However, checking the self-contradiction alone is not enough
to detect the errors on KGs effectively, since a false triple may
mimic the translational patterns.

2) Global Inconsistency: To complement the local dissimilar-
ity, we also consider another TripleNet paradigm that judges triple
anomalous based on its global structure. The basic observation
is that the abnormal triple is more likely to have fake neighbors
that actually are not related to the target triple, since the anchor
triple does not exist. For this reason, we can compute the
difference between an anchor triple embedding and its context
embedding to determine the degree of abnormality. Formally,
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Fig. 2: Anomaly Discovery Curve on NELL and DBpedia. The
x-axis is the top K triples in the anomaly score ranking, and
the y-axis is the erroneous triples discovered at different K.

we calculate the difference between them using the following
reconstruction error:

dglobal = ||z − x||2.

Our model further integrates the two suspicious measurements
to make a complementary suspicious score as follows:

djoint = dlocal + λdglobal,

where λ is a trade-off parameter to balance the importance of
two similarities.

To encourage discrimination between positive (golden) triples
and negative (corrupted) triples, we use an unsupervised
training approach for model optimization. Specifically, the
margin-based ranking loss function is defined as follows:

L=
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

[
γ+djoint(h,r,t)−djoint(h′,r,t′)

]
+
, (3)

where []+ denotes the positive part of x, γ > 0 is the margin
hyper-parameter, S is the set of correct triples and S ′ is the
set of corrupted triples. S ′ is constructed by either corrupting
the head or tail entity randomly, which is defined as:

S ′
(h,r,t) = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E} . (4)

3) Error Detection: After the model is properly trained,
we can infer the suspicious degree of an arbitrary triple.
Specifically, given a triple (h, r, t) from G, we calculate its
suspicious score fs(h,r,t) as below:

fs(h,r,t) = djoint(h,r,t). (5)

When fs(h,r,t) is larger, the triple is more likely to be a
noisy fact. Our framework finally identifies the anomalous
triples of the given KG by ranking the suspicious scores.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset: To verify the effectiveness of TripleNet, we
conduct experiments over two benchmark knowledge graph
datasets, NELL [4] and DBpedia [22], that are publicly
accessible and vary in source domains, size, and sparsity. The
statistical information of the datasets is summarized in Table I.

TABLE I: Statistics of the knowledge graph datasets.
# Triples (n) # Entity # Relation

NELL 231,634 46,682 821
DBpedia 2,920,168 976,404 504
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TABLE II: Error detection results of Precision@K and Recall@K based on two datasets with error ratio p = 5%.
Metric Precision@K Recall@K

Dataset NELL DBpedia NELL DBpedia

Top@K 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

TransE 0.637 0.531 0.427 0.412 0.366 0.645 0.548 0.476 0.423 0.383 0.127 0.212 0.256 0.330 0.366 0.129 0.219 0.286 0.338 0.383
ComplEx 0.601 0.526 0.454 0.419 0.348 0.603 0.533 0.472 0.431 0.357 0.120 0.210 0.272 0.335 0.348 0.121 0.213 0.283 0.345 0.357
DistMult 0.631 0.532 0.472 0.423 0.401 0.662 0.539 0.489 0.438 0.420 0.126 0.213 0.283 0.338 0.401 0.132 0.216 0.293 0.350 0.420
KGIST 0.675 0.586 0.496 0.459 0.431 0.701 0.613 0.501 0.498 0.450 0.134 0.234 0.298 0.367 0.431 0.140 0.245 0.301 0.398 0.450
KGTtm 0.681 0.600 0.512 0.452 0.405 0.760 0.628 0.586 0.474 0.436 0.136 0.240 0.307 0.362 0.405 0.152 0.251 0.352 0.379 0.436
Ours 0.738 0.623 0.538 0.477 0.435 0.844 0.729 0.632 0.557 0.497 0.148 0.249 0.323 0.382 0.436 0.169 0.292 0.379 0.445 0.497

2) Baseline Methods: To comprehensively evaluate the per-
formance of the proposed method, we compare it with five state-
of-the-art algorithms, including TransE [14], ComplEx [23],
DistMult [24], KGIST [25], and KGTtm [26]. Specifically, the
first three are typical knowledge graph representation methods,
including translation-based and bilinear-mapping models. The
other two are state-of-the-art error detection baselines in
knowledge graphs, which aim to detect abnormal triples.

3) Data pre-processing.: Since there are no labeled errors
in our two KG datasets, we resort to injecting two types of
synthetic errors to stimulate the erroneous environment in
the real world: false relation error, which is to swap the
relation of a golden-standard triple with a false one; and
connection error, which is to insert a false link between a
non-related pair of entities. We set up the error ratio p from
{1%, 2%, 3%, 4%, 5%}, and uniformly and randomly inject a
mix of false relation errors and connection errors, with a ratio
p/2% correspondingly, so that each sample triple has an equal
probability of being picked up to construct an incorrect triple.
Therefore, in our experiments, the goal is to automatically
detect these perturbed triples.

B. Effectiveness of TripleNet (Q1)
We first evaluate the effectiveness of our model TripleNet

over these baselines on two benchmark datasets. Table II and
Figure 2 report the results of comparing methods for error
detection on two metrics, i.e., Precision@K and Recall@K.
We have the following three observations:
• From Table II, we can observe that TripleNet consistently

performs better than other baselines over all the datasets
with a great margin. Compared with error detection methods,
knowledge graph representation baselines such as TransE,
ComplEx, and DistMult yield worse results in general. This
result demonstrates the necessity of building task-specific
algorithms for error detection.

• Former error detection methods (KGIST and KGTtm) are
always surpassed by our model across two datasets, in terms
of two evaluation metrics. These results demonstrate the
effectiveness of our model in capturing local and global
information for error detection in KGs.

• From Table II and Figure 2, we observe that the proposed
model consistently outperforms other baselines across differ-
ent K values, in terms of Precision@K and Recall@K. And
with the increasing number of K, the gap in the performances
between our method and baselines tends to increase. The
success of our method is attributed to the joint optimization
of local-level and global-level error detectors.

TABLE III: The running time for one iteration (in seconds).
TransE ComplEx DistMult KGIST KGTtm Ours

NELL 1 1 40 52 4 1
DBpedia 20 21 96 122 33 38

C. Efficiency Analysis of TripleNet (Q2)

To answer Q2, we record the running time of one iteration for
all models. All experiments are conducted with one NVIDIA
RTX 2080 Ti GPU. From Table III, we can observe that TransE
and ComplEx run faster than other methods in general since
they only need to calculate the mean square losses. And the
semantic-based method DistMult costs more time than TransE
and ComplEx on all datasets. Compared to error detection
methods, our model is comparable to the path-based error
detection method KGTtm on average, while it runs faster than
the rule-based method, KGIST, especially in the large-scale
dataset, DBpedia. This observation validates the efficiency of
our model compared to baseline methods.

D. Ablation Study (Q3)

To address Q3, we conducted an ablation study, which
involved the proposed method and its two variants: 1)
TripleNet_Local, focuses solely on the local dissimilarity mea-
surement defined in Eq. (2). 2) TripleNet_Global, considers only
the global dissimilarity measurement defined in Eq. (III-C2). 3)
TripleNet_GAT, denotes the proposed method in this experiment,
which incorporates the attention mechanism to implement the
readout function. Table IV provides a summary of the results
obtained on NELL with a 5% error rate. The following ob-
servations were made: First, the performance of TripleNet_Local
surpassed that of TransE but fell short of TripleNet_GAT. This
outcome validates the effectiveness of the Bi-LSTM layer
in capturing sequential patterns within the triples, thereby
enhancing representation learning. Second, TripleNet_Global
outperformed TripleNet_Local in the majority of cases. This
finding suggests that the global structure among the triples
holds valuable information for detecting the most anomalous
triples. However, it should be noted that some anomalous
triples exhibit deceptive characteristics and can be detected by
examining their local sequential structure. Third, TripleNet_GAT
demonstrated a significant performance improvement over both
TripleNet_Local and TripleNet_Global. This outcome underscores
the complementary effects of combining local and global
measurements for joint error detection.
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TABLE IV: Ablation Study on NELL with 5% ratio of errors.
Precision@K Recall@K

Top@K 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

TripleNet_Local 0.674 0.571 0.497 0.446 0.406 0.135 0.228 0.291 0.357 0.406
TripleNet_Global 0.714 0.619 0.526 0.464 0.422 0.143 0.247 0.315 0.371 0.422
TripleNet_GAT 0.738 0.623 0.538 0.477 0.435 0.148 0.249 0.323 0.382 0.436

V. RELATED WORK

In this section, we discuss two kinds of KG error detection
methods that are most relevant to ours, including embedding-
based and rule-mining-based error detection methods. KG
embedding-based error detection methods include tensor
factorization-based models [27], [28], translational distance
models such as TransE [14], TransM [29], TransR [30], and
TransH [31], semantic matching models such as ComplEx [23],
triple trustworthiness measurement model KGTtm [32]. Rule-
mining-based error detection approaches associate rule mining
which analyzes the co-occurrence of items in item sets and
leverages these association rules for error detection [33]–[36].
However, to achieve better performance, the representation and
rule mining algorithms should be tailored for the specific task.
Therefore, we need to propose a novel tailored KG embedding
method for the error detection task.

VI. CONCLUSION AND FUTURE WORK

Automatically detecting errors in KGs is essential and
promising for dynamically updated and large-scale KGs. In this
paper, we investigate the error detection problem based on triple-
level embedding. We propose a novel error detection framework,
termed TripleNet. We make the most use of the KG self-contained
information, including triples’ sequential information and KG’s
contextual information to reconstruct a triple given a KG. A
triple is detected as a mismatch according to this combined
representation information. Extensive experiments on two real-
world knowledge graph datasets demonstrate the effectiveness
of TripleNet for detecting errors on real-world KGs. In the
future, we would like to explore using the embedding method
in TripleNet for guiding KG reasoning, and question-answering.
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