
Towards Model-Agnostic Federated Learning over
Networks

A. Jung∗†, S. Abdurakhmanova†, O. Kuznetsova†, Y. Sarcheshmehpour†
∗Silo AI

†Dept. of Computer Science, Aalto University

Abstract—We present a model-agnostic federated learning
method for decentralized data with an intrinsic network struc-
ture. The network structure reflects similarities between the
(statistics of) local datasets and, in turn, their associated local
(“personal”) models. Our method is an instance of empirical risk
minimization, with the regularization term derived from the net-
work structure of data. In particular, we require well-connected
local models, forming clusters, to yield similar predictions on a
common test set. The proposed method allows for a wide range of
local models. The only restriction put on these local models is that
they allow for efficient implementation of regularized empirical
risk minimization (training). Such implementations might be
available in the form of high-level programming frameworks such
as scikit-learn, Keras or PyTorch.

Index Terms—federated learning, personalization, heteroge-
neous, non-parametric, complex networks

I. INTRODUCTION

Many important application domains for machine learning
(ML), such as numerical weather prediction, the internet of
things or healthcare, generate decentralized data [1]. Decen-
tralized data consists of local datasets that are related by an
intrinsic network structure. Such a network structure might
arise from relations between the generators of local datasets
or functional constrains of the computational infrastructure [2],
[3]. We can represent such networked data using an undirected
weighted empirical graph [4, Ch. 11].

There is a substantial body of work on machine learning
(ML) and signal processing models and techniques for graph
structured data [3]–[6]. Most of existing work studies para-
metric models for local datasets that are related by an intrinsic
network structure. Maybe the most basic model for networked
data is the scalar graph signal-in-noise model [7], [8]. For
this model, sampling theorems and generalization bounds
have been derived using different smoothness or clustering
assumption [7], [9]–[11]. The extension from scalar signal-
in-noise models to vector-valued graph signals and networked
exponential families has been studied in [11], [12].

Federated learning (FL) is an umbrella term for collabo-
rative training of ML models from decentralized data. FL
methods have been championed for high-dimensional para-
metric models such as deep nets [13]–[15]. The focus of FL
research so far has been on distributed optimization methods
that exchange different forms of model parameter updates such

This work has been supported by the Academy of Finland via funding
granted under decision numbers 331197 and 331197.

as gradients [16]–[19]. However, there is only little work on FL
of non-parametric models such as decision trees. The adaption
of specific decision tree algorithms to a FL setting is discussed
in [14, Ch. 2].

The closest to our work is recent work on using knowledge
distillation to couple the training of local models [20], [21].
Similar to this knowledge distillation approach, we also use
predictions of local models on a pre-defined set of data points
to couple their training processes. However, in contrast to [20],
[21] we exploit the network structure of decentralized data to
construct a regularizer. Our regularization approach is similar
in spirit to [21] which studies a centralized FL architecture
to learn tailored (personalized) parametric local models for
multi-class classification. In contrast, our method can be com-
bined also with non-parametric models and different choices
for the loss function (regression or classification). Moreover,
our method lends to distributed implementations as message
passing over the data network.

Contribution. To the best of our knowledge, we present the
first model agnostic FL method for decentralized data with an
intrinsic network structure. Our method copes with arbitrary
collections of local models for which efficient implementations
are available. Such implementations are typically available
in high-level programming frameworks such as the Python
libraries scikit-learn, Keras or PyTorch [22]–[24].
The proposed method couples the training of well-connected
local models (forming a cluster) via enforcing them to deliver
similar predictions for a pre-specified test set.

Outline. Section II formulates the problem of FL from
decentralized data. Section III presents a model-agnostic FL
method that trains heterogeneous networks of (local) ML
models in a distributed fashion.

II. PROBLEM FORMULATION

Section II-A introduces the empirical graph as a useful
representation of collections of local datasets along with their
similarities. Section II-B augments the empirical graph by
assigning a separate local hypothesis space (or model) to each
node. Section III presents our model agnostic FL method
for coupling the training of local models by regularization.
The regularization will be implemented by enforcing a small
variation of local models at well-connected nodes (clusters).
Section II-C introduces the generalized total variation (GTV)
as quantitative measure for the variation of heterogeneous

1614ISBN: 978-9-4645-9360-0 EUSIPCO 2023



networks of ML models. large training set to train each local
model.

A. The Empirical Graph

We represent decentralized data, i.e., collections of local
datasets D(i), for i = {1, . . . , n}, using an empirical graph
G := (V, E) with nodes (vertices) V = {1, . . . , n}. The em-
pirical graph of decentralized data is an undirected weighted
graph G = (V, E) whose nodes V := {1, . . . , n} carry the
local datasets D(i), for i ∈ V . Each node i∈V of the empirical
graph G carries the local dataset

D(i) :=
{(

x(i,1), y(i,1)
)
, . . . ,

(
x(i,mi), y(i,mi)

)}
. (1)

Here, x(i,r) ∈ X and y(i,r) ∈ Y denote, respectively, the
feature vector and true label of the r-th data point in the
local dataset D(i). In principle, our method allows for arbitrary
feature space X and label space Y . However, unless stated
otherwise, we consider the choices X := Rd and Y := R. We
allow the size mi of the local dataset to vary between different
nodes i ∈ V .

An undirected edge {i, i′} ∈ E in the empirical graph
indicates that the local datasets D(i) and D(i′) have similar
statistical properties. We quantify the level of similarity by a
positive edge weight Ai,i′>0.1 The neighbourhood of a node
i ∈ V is N (i) := {i′ ∈ V : {i, i′} ∈ E}.

Note that the undirected edges {i, i′} of an empirical
graph encode a symmetric notion of similarity between local
datasets. If the local dataset D(i) at node i is (statistically)
similar to the local dataset D(i′) at node i′, then also the local
dataset D(i′) is (statistically) similar to the local dataset D(i).

The empirical graph of networked data is a design choice
which is guided by computational aspects and statistical as-
pects of the resulting ML method. For example, using an
empirical graph with a relatively small number of edges
(“sparse graphs”) typically results in a smaller computational
complexity. Indeed, the amount of computation required by
the FL methods developed in Section III is proportional to the
number of edges in the empirical graph.

On the other hand, the empirical graph should contain
sufficient number of edges between nodes that carry statis-
tically similar local datasets. This allows GTV minimization
(GTVMin) techniques to adaptively pool local datasets into
clusters of (approximately) homogeneous data.

Being essentially a hyper-parameter or our FL method, we
can choose the empirical graph using validation techniques.
Recent approaches to determine a useful empirical graph
apply tools from graph signal processing and probabilistic
graphical models [3], [25]. In some applications, we can define
the similarity between local datasets simply by counting the
number of identical data points. A quite fundamental approach
to determine the presence of an edge is to test if adding the

1The notion of statistical similarity could be made precise using a prob-
abilistic model that interprets the data points in each local dataset D(i)

as independent and identically distributed (i.i.d.) draws from an underlying
probability distribution p(i)

(
x, y

)
. The analysis of the statistical aspects of

our method using a probabilistic model is beyond the scope of this paper.

potential neighbour to the model training results in improved
performance [26].

B. Networked Models
Consider networked data with empirical graph G whose

nodes i ∈ V carry local datasets D(i). For each node i ∈ V , we
wish to learn a useful hypothesis ĥ(i) from a local hypothesis
space H(i). The learnt hypothesis should incur a small average
loss over a local dataset D(i),

Li

(
ĥ(i)
)
:=(1/mi)

mi∑
r=1

L
((

x(i,r), y(i,r)
)
, ĥ(i)

)
. (2)

A collection of local models H(i), for each i ∈ V , consti-
tutes a networked model H(G) over the empirical graph G,

H(G) : i 7→ H(i) for each node i ∈ V. (3)

In other words, a networked model is constituted by networked
hypothesis maps h ∈ H(G). Each such networked hypothesis
map assigns each node i ∈ V a local hypothesis,

h : i 7→ h(i) ∈ H(i). (4)

It is important to note a networked model may combine
different types of local models H(i). For example, H(i) might
be a linear model H(d), while H(i′) might be a decision tree
for some other node i′ 6= i. The only restriction we place on
the choice for local models is the availability of computational
means (“a .fit() function”) to train them via (approximately)
solving instances of regularized empirical risk minimization
(RERM).

C. Generalized Total Variation
In principle, we could train each local modelH(i) separately

on the corresponding local dataset D(i) for each node i ∈
V . However, the local datasets might be too small to train a
local model which might be a (deep) artificial neural network
(ANN) or a linear model with a large number of features.
As a remedy, we could try to pool local datasets with similar
statistics to obtain a sufficiently large dataset to successfully
train the local models H(i).

The main theme of this paper is to use the network structure
of the empirical graph G to adaptively pool local datasets with
similar statistical properties. We implement this pooling by
requiring local models at well-connected nodes (clusters) to
behave similar on a pre-specified test set of data points. To
make this informal idea more precise, we next introduce a
quantitative measure for the variation (or discrepancy) of local
models across the (weighted) edges e ∈ E of the empirical
graph G.

Consider two nodes i, i′ ∈ V in the empirical graph that are
connected by an edge {i, i′} with weight Ai,i′ . We define the
variation between h(i) and h(i

′) via the discrepancy between
their predictions

d
(
h(i), h(i

′)
)
:=

(1/m′)

m′∑
r=1

[
L(d)

(
x(r), h(i)

(
x(r)

)
, h(i

′)
(
x(r)

))
. (5)

1615



on a common test set

D(test) =
{

x(1), . . . ,x(m′)
}
. (6)

The test set (6), which consists of m′ feature vectors, must be
shared with each node i ∈ V of the empirical graph.

We then define the GTV of a networked hypothesis h ∈
H(G) by summing the discrepancy (5) over all edges E ,

GTV {h} :=
∑
{i,i′}∈E

Ai,i′d
(
h(i), h(i

′)
)
. (7)

Note that GTV {h} is parametrized by the choice for the loss
function

L(d) (·, ·, ·) : Rd × R× R→ R,

used to compute the discrepancy d
(
h(i), h(i

′)
)

via (5). This
loss function depends on h(i), h(i

′) only via their predictions
h(i)
(
x(r)

)
, h(i

′)
(
x(r)

)
.

The choice for the loss function L(d) in (5) might be
unrelated to the choice for the local loss function (2) used
to measure the prediction error of a local hypothesis h(i).
However, it might be beneficial to construct the loss function
in (5) using the loss function (2) (see Section III-A).

Using GTV (7) as a regularizer is useful if the edges in
the empirical graph conform with similarities between the
statistical properties of local datasets. This informal require-
ment can be made precise using various forms of a clustering
assumption [4], [27].

III. A MODEL AGNOSTIC FL METHOD

Consider networked data that is modelled by an empirical
graph. It seems natural to learn a a local hypothesis h(i) for
each node i ∈ V by balancing the local loss function with
the GTV (7). The precise formulation of this balancing is
GTVMin,

min
{h(i)∈H(i)}

∑
i∈V

Li

(
h(i)
)
+ λ

∑
{i,i′}∈E

Ai,i′d
(
h(i), h(i

′)
)
. (8)

Note that GTVMin (8) is an instance of the RERM principle.
Indeed, we can interpret the (aggregate) local loss function as
the training error of a networked h ∈ H(G) and the GTV as a
regularizer

We use block-coordinate minimization [28], [29] to solve
GTVMin (8). To this end, we rewrite (8) as

min
h∈H(G)

∑
i∈V

[
Li

(
h(i)
)
+(λ/2)

∑
i′∈N (i)

Ai,i′d
(
h(i), h(i

′)
)]

︸ ︷︷ ︸
:=f(h(1),...,h(n))

. (9)

Given some local hypothesis maps ĥ(i)k′ , for all nodes i′ ∈ V ,
we compute (hopefully improved) updated local hypothesis
maps ĥ(i)k′+1 by minimizing f(h) along h(i), keeping the other
local hypothesis maps fixed,

ĥ
(i)
k+1 ∈ argmin

h(i)∈H(i)

f

(
ĥ
(1)
k , . . . , ĥ

(i−1)
k , h(i), ĥ

(i+1)
k , . . .

)
(9)
= argmin

h(i)∈H(i)

Li

(
h(i)
)
+ (λ/2)

∑
i′∈N (i)

Ai,i′d
(
h(i), ĥ

(i′)
k

)
. (10)

We obtain Algorithm 1 by iterating (10), simultaneously at
all nodes i ∈ V , until a stopping criterion is met. Examples
for a stopping criterion include a pre-specified number of
iterations or monitoring the decrease of local loss function.
The main computational work of Algorithm 1 is done in step

Algorithm 1 FedRelax
Input: empirical graph G with edge weights Ai,i′ ; local
loss functions Li (·); test-set D′ =

{
x(1), . . . ,x(m′)

}
; GTV

parameter λ; loss function L(d) (see (5))
Initialize: k :=0; ĥ(i)0 ≡0 for all nodes i ∈ V

1: while stopping criterion is not satisfied do
2: for all nodes i ∈ V in parallel do
3: share predictions

{
ĥ
(i)
k

(
x
)}

x∈D(test)
, with neigh-

bours i′ ∈ N (i)

4: update local hypothesis ĥ(i)k by

ĥ
(i)
k+1∈ argmin

h(i)∈H(i)

Li

(
h(i)
)
+(λ/2)

∑
i′∈N (i)

Ai,i′d
(
h(i), ĥ

(i′)
k

)
. (11)

5: end for
6: k :=k+1
7: end while

Ensure: local hypothesis ĥ(i) := ĥ
(i)
k for all nodes i ∈ V

(4). This step is an instance of RERM for the local model
H(i) at each node i ∈ V . The regularization term in this
RERM instance is the weighted sum of the discrepancies (5)
between the predictions of the local hypothesis map h(i) and
the predictions of the current local hypothesis maps h(i) at
neighbouring nodes i′ ∈ N (i).

A. Model Agnostic Federated Least-Squares Regression

Note that Algorithm 1 is parametrized by the choices for
the loss function used to measure the training error (2) and
the loss function used to measure the discrepancy (5) between
the local models across the edge {i, i′} ∈ E .

A popular choice for the loss function in regression prob-
lems, i.e., data points having an numeric label, is the squared
error loss

L ((x, y), h) :=
(
y − h(x)︸︷︷︸

=ŷ

)2
. (12)

We obtain Algorithm 2 as the special case of Algorithm 1
when using the squared error loss in (2) and (5).

Note that the update (11) is nothing but RERM for learning
a local hypothesis h(i) ∈ H(i) from the local dataset D(i). The
regularization term in (11) is the average squared error loss
incurred on the (“pseudo-”) labeled test set (see (6))⋃
i′∈N (i)

{(
x(1), ĥ

(i′)
k

(
x(1)

)
, . . . ,

(
x(m′), ĥ

(i′)
k

(
x(m′)

))}
. (14)

B. Parametric Model Agnostic Federated Learning

We now apply Algorithm 1 to train a parametric networked
model H(G) with each local model H(i) parametrized by a

1616



Algorithm 2 FedRelax Least-Squares Regression
Input: empirical graph G with edge weights Ai,i′ ; test-set
D′ =

{
x(1), . . . ,x(m′)

}
; GTV parameter λ

Initialize: k :=0; ĥ(i)0 ≡0 for all nodes i ∈ V
1: while stopping criterion is not met do
2: for all nodes i ∈ V in parallel do
3: share test-set labels

{
ĥ
(i)
k

(
x
)}

x∈D(test)
, with

neighbours i′ ∈ N (i)

4: update local hypothesis ĥ(i)k by

ĥ
(i)
k+1 ∈ argmin

h(i)∈H(i)

[
(1/mi)

mi∑
r=1

(
y(i,r) − h(i)

(
x(i,r)

))2

+(λ/(2m′))
∑

i′∈N (i)

Ai,i′

m′∑
r=1

(
h(i)
(
x(r)

)
− ĥ(i

′)
k

(
x(r)

))2 ]
. (13)

5: end for
6: k :=k+1
7: end while

Ensure: local hypothesis ĥ(i) := ĥ
(i)
k for all nodes i ∈ V

local model parameters w(i) ∈ Rd. The common dimension
d of all local models is identical to the length of the feature
vectors in the test set D(test) (6). For every node i ∈ V , any
hypothesis map h(i) = h(w

(i)) in H(i) is determined by a
specific choice of local model parameters w(i).

The usefulness of a specific choice for w(i) is measured by
the local loss function Li

(
w(i)

)
= Li

(
h(w

(i))
)

. We measure

the discrepancy (5) between local hypothesis maps h(w
(i)),

h(w
(i′)) across {i, i′} ∈ E using the squared error loss,

L(d)
(
x, h(i)

(
x
)
, h(i

′)
(
x
))

:=
(
xT
(
w(i) −w(i′)

))2
. (15)

Inserting (15) into (5) yields

d
(
w(i),w(i′)

)
= d
(
h(w

(i)), h(w
(i′))
)

= (2/m′)

m′∑
r=1

((
w(i)

)T
x(r)−

(
w(i′)

)T
x(r)

)2

= (2/m′)
(
w(i)−w(i′)

)T
X

′(
X

′)T (
w(i)−w(i′)

)
. (16)

Here, we used the feature matrix X′ =
(
x(1), . . . ,x(m′)

)
∈

Rd×m′
whose columns are the feature vectors in the test-set

D(test) (6). It is important to note that (16) depends on the
local model parameters only via their predictions

(
w(i)

)T
x(r),(

w(i′)
)T

x(r) for the data points in the test-set (6).
We obtain Algorithm 3 from Algorithm 1 by inserting (16)

into (11). We also obtain the corresponding special case of
GTVMin, that is solved by Algorithm 3, by inserting (16)

into (8),

min
{w(i)∈Rd}

∑
i∈V

Li

(
w(i)

)
(17)

+ (2λ/m′)
∑
{i,i′}∈E

Ai,i′
(
w(i)−w(i′)

)T
X

′(
X

′)T (
w(i)−w(i′)

)
.

Let us reformulate the regularizer in (17) using

(2λ/m′)
∑
{i,i′}∈E

Ai,i′
(
w(i)−w(i′)

)T
X

′(
X

′)T (
w(i)−w(i′)

)
= (2λ/m′)WΩWT using W=

(
w(1), . . . ,w(n)

)
, and

Ω = X′
(
L⊗ Id

)(
X′
)T
. (18)

Here, we used the Laplacian matrix L of the empirical graph
which is defined element-wise as Li,i =

∑
i′∈N (i) Ai,i′ ,

Li,i′ = −Ai,i′ for every edge {i, i′} ∈ E and Li,i′ = 0 if
there is no edge between nodes i, i′ ∈ V .

Inserting (18) into (17) reveals that the GTVMin instance
solved (approximately) by Algorithm 3 is a special case of the
multitask learning problem [30, Eq. (1)]. In particular, (17)
is identical to [30, Eq. (1)] with the choice λ1 = (2λ/m′),
λ2 = 0 and the matrix Ω as defined in (18). However, in
contrast to the method put forward in [30], we do not optimize
the matrix Ω as it is determined by the (edge weights in the)
empirical graph G which we assume fixed and known.

Algorithm 3 FedRelax for Parametric Models
Input: empirical graph G with edge weights Ai,i′ ; local
loss functions Li (·); test-set D′ =

{
x(1), . . . ,x(m′)

}
; GTV

parameter λ;
Initialize: k :=0; ŵ

(i)
0 ≡0 for all nodes i ∈ V

1: while stopping criterion is not met do
2: for all nodes i ∈ V in parallel do
3: share predictions

{(
ŵ

(i′)
k

)T
x
}
x∈D(test)

, with

neighbours i′ ∈ N (i)

4: update local model parameters ŵ
(i)
k by

ŵ
(i)
k+1∈argmin

w(i)∈Rd

Li

(
w(i)

)
+(λ/m′)

∑
i′∈N (i)

m′∑
r=1

((
w(i)

)T
x(r)−

(
ŵ

(i′)
k

)T
x(r)

)2

. (19)

5: end for
6: k :=k+1
7: end while

Ensure: local hypothesis ĥ(i) := h(ŵ
(i)
k ) for all nodes i ∈ V

IV. CONCLUSION

We have introduced a novel method to train heterogeneous
networks of (personalized) local models. Each local model is
trained on a local dataset which however might not provide
sufficient statistical power to allow for successful training. We
therefore couple the training of local models for statistically
similar local datasets. The similarity structure between local

1617



datasets and their local models is represented by an empirical
graph. We use the undirected and weighted edges of the
empirical graph to construct a regularization term that couples
local models. In particular, the regularization forces local
models at well-connected nodes of the empirical graph to
agree in their predictions on common test set of unlabeled
data points.

REFERENCES

[1] S. Cui, A. Hero, Z.-Q. Luo, and J.M.F. Moura, Eds., Big Data over
Networks, Cambridge Univ. Press, 2016.

[2] M. E. J. Newman, Networks: An Introduction, Oxford Univ. Press,
2010.

[3] L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo, S. Li,
and A.G. Constantinides, “Data analytics on graphs part III: Machine
learning on graphs, from graph topology to applications,” Foundations
and Trends® in Machine Learning, vol. 13, no. 4, pp. 332–530, 2020.

[4] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learn-
ing, The MIT Press, Cambridge, Massachusetts, 2006.

[5] L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo, S. Li,
and A.G. Constantinides, “Data analytics on graphs part i: Graphs and
spectra on graphs,” Foundations and Trends® in Machine Learning, vol.
13, no. 1, pp. 1–157, 2020.

[6] L. Stanković, D. Mandic, M. Daković, M. Brajović, B. Scalzo, S. Li,
and A.G. Constantinides, “Data analytics on graphs part ii: Signals on
graphs,” Foundations and Trends® in Machine Learning, vol. 13, no.
2-3, pp. 158–331, 2020.

[7] A. Jung, A O. Hero, A. Mara, S. Jahromi, A. Heimowitz, and Y.C. Eldar,
“Semi-supervised learning in network-structured data via total variation
minimization,” IEEE Trans. Signal Processing, vol. 67, no. 24, Dec.
2019.

[8] K. Sunil P. Frossard D.I. Shuman, S.K. Narang, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
2013.

[9] A. Jung, N. Tran, and A. Mara, “When is Network Lasso Accurate?,”
Front. Appl. Math. Stat., vol. 3, Jan. 2018.

[10] A. Anis, A. Gadde, and A. Ortega, “Towards a sampling theorem for
signals on arbitrary graphs,” May 2014, pp. 3864–3868.

[11] A. Jung, “Networked exponential families for big data over networks,”
IEEE Access, vol. 8, pp. 202897–202909, 2020.

[12] J. Kovačević Y. Chi R. Varma, H. Lee, “Vector-valued graph trend
filtering with non-convex penalties,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 6, pp. 48–62, 2020.

[13] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aguera
y Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, Aarti Singh and Jerry Zhu, Eds.,
Fort Lauderdale, FL, USA, 20–22 Apr 2017, vol. 54 of Proceedings of
Machine Learning Research, pp. 1273–1282, PMLR.

[14] H. Ludwig and N. Baracaldo, Eds., Federated Learning: A Comprehen-
sive Overview of Methods and Applications, Springer, 2022.

[15] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
Learning, Springer, 1 edition, 2022.

[16] J. Liu and C. Zhang, “Distributed learning systems with first-order
methods,” Foundations and Trends in Databases, vol. 9, no. 1, pp. 100.

[17] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, “Large scale
distributed deep networks,” in Advances in Neural Information Process-
ing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger,
Eds. 2012, vol. 25, Curran Associates, Inc.

[18] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812, 1986.

[19] K. Scaman, F. Bach, S. Bubeck, L. Massoulié, and Y.T. Lee, “Optimal
algorithms for non-smooth distributed optimization in networks,” in
Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.
2018, vol. 31, Curran Associates, Inc.

[20] A. Afonin and S.P. Karimireddy, “Towards model-agnostic federated
learning using knowledge distillation,” in International Conference on
Learning Representations, 2022.

[21] J. Zhang, S. Guo, X. Ma, H. Wang, W. Xu, and F. Wu, “Parameterized
knowledge transfer for personalized federated learning,” in Advances in
Neural Information Processing Systems, A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, Eds., 2021.

[22] F. Pedregosa, “Scikit-learn: Machine learning in python,” Journal of
Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.

[23] H. Jin, F. Chollet, Q. Song, and X. Hu, “Autokeras: An automl library
for deep learning,” Journal of Machine Learning Research, vol. 24, no.
6, pp. 1–6, 2023.

[24] A. Paszke et.al., “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. 2019, vol. 32, Curran Associates, Inc.

[25] N. Tran, O. Abramenko, and A. Jung, “On the sample complexity
of graphical model selection from non-stationary samples,” IEEE
Transactions on Signal Processing, vol. 68, pp. 17–32, 2020.

[26] A. Ghosh, J. Chung, D. Yin, and K. Ramchandran, “An efficient
framework for clustered federated learning,” in 34th Conference on
Neural Information Processing Systems (NeurIPS 2020), Vancouver,
Canada, 2020.

[27] L. Zhang Y. SarcheshmehPour, Y. Tian and A. Jung, “Networked
federated learning,” arXiv e-prints, 2022.

[28] D. P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods, Athena Scientific, 2015.

[29] D. P. Bertsekas, Convex Optimization Algorithms, Athena Scientific,
2015.

[30] V. Smith, C.-K. Chiang, M. Sanjabi, and A.S. Talwalkar, “Federated
Multi-Task Learning,” in Advances in Neural Information Processing
Systems, 2017, vol. 30.

1618


