
Product Graph Gaussian Processes for
Multi-domain Data Imputation and Active Learning

Sai Kiran Kadambari and Sundeep Prabhakar Chepuri
Indian Institute of Science, Bengaluru, India

Abstract—In this work, we consider the problem of imputing
signals defined on the nodes of a product graph from the subset
of observations. To this end, we focus on learning their predictive
probability distribution function (PDF) based Gaussian processes.
In particular, we propose a product graph Gaussian process
model, which incorporates the product graph structure in the
Gaussian process kernel via a product graph filter. When the
observed graph signals are real-valued, the mean and variance of
the predictive PDF can be computed in closed form. Further, the
variance captures the model uncertainty, which we use for active
learning to obtain subsequent observations. We demonstrate the
efficacy of the proposed method on multi-domain data imputation
and active learning tasks on synthetic and real-world datasets.

Index Terms—Gaussian process, graphs, product graphs, semi-
supervised learning over graphs.

I. INTRODUCTION

In many applications, we observe large volumes of data or
signals supported on non-Euclidean (the irregular) domains or
networks. Such data can be modeled as the signals indexed by
the nodes of a graph (hence referred to as graph signals) and
the pairwise interaction between the data points are modeled
as edges [1]. Often, graphs underlying data are factorizable
and can be expressed as a product of two or more smaller
graphs [2], [3]. Such factorizable graphs are called product
graphs, which can represent multi-domain graph data. For
example, in time-series data collected from a sensor network,
there is a spatial and a temporal domain. Each space-time
measurement is then enumerated by the nodes of a product
graph, e.g., formed by the Cartesian product of a spatial
domain graph and a temporal domain graph. Computations
involving smaller graph factors have well-documented merits
for various semi-supervised learning tasks like regression,
classification and matrix completion, to name a few.

A common graph machine learning task is to interpolate or
predict graph signals on unobserved nodes from observations
on a subset of nodes [4] . Ignoring the product graph structure,
recent works [4], [5] develop point estimators for imputing
missing graph signals, assuming that the underlying graph
signals are smooth on the graph. However, these methods
do not quantify the uncertainty or confidence in the estimate,
which can be useful for active learning (AL). Gaussian process
(GP) methods [6] follow a Bayesian approach to model the
uncertainty in the estimate by learning its predictive prob-
ability distribution function (PDF). For the graph signals,
graph Gaussian process (GGP) leverage the underlying graph
structure to estimate a function predictive PDF of the graph
signals on the unobserved nodes. These methods incorporate

102 103 104

10-2

100

102

T
im

e
(s

)

Number of nodes

PGGP
GGP

Fig. 1: Average run time of PGGP (proposed method) and GGP [8].

graph information through a graph kernel or graph filter [7],
[8]. These methods typically incur a cubic complexity (cubic
in the number of nodes) (as discussed later on in Section III)
and, thus, are not scalable for large-scale multi-domain graph
data. For the Euclidean domain data, scalable GP methods for
regression tasks are proposed [9], [10]. These methods exploit
the fact that the kernel underlying such data can be factorized
as the Kronecker product of kernels related to each domain.
Even though these methods are scalable, they are limited to
regular domain datasets.

In this work, given a multi-domain graph signal observations
on a subset of nodes of a product graph, we focus on
learning a function predictive posterior PDF corresponding
to the signals on the remaining nodes along with the model
uncertainty. Specifically, the contributions of this paper are as
follows. Following a GP approach, we propose a product graph
Gaussian process (PGGP). We incorporate the underlying
product graph structure into the GP kernel via a generalized
product graph filter with learnable parameters. Assuming the
observed graph signals are real-valued and follow a Kronecker-
structured sampling scheme (as in [11]), the function pre-
dictive posterior PDF of the graph signals related to the
unobserved nodes follows Gaussian distribution and its mean
and variance can be computed in closed form. We leverage the
model uncertainty captured by the variance for active learning
to select subsequent observations. We demonstrate proposed
method on synthetic and real-world datasets on graph data
interpolation and active learning tasks. The proposed method
is scalable and is particularly useful for processing signals on
large-scale product graphs (see the average run time of GGP
and PGGP in Fig. 1).

Throughout the paper, we denote matrices (respectively,
vectors) with boldface uppercase (lower case) letters and sets
with calligraphic letters. Given a square matrix A, the trace

1619ISBN: 978-9-4645-9360-0 EUSIPCO 2023

and determinant of a matrix A are represented by tr(A) and
det(A), respectively. For any three matrices A, B, C of
appropriate dimension, the following holds

vec (ABC) = vec
(
CT ⊗A

)
vec (B) . (1)

II. BACKGROUND

Consider an undirected graph GN = (VN , EN) with N
nodes whose vertex set is VN and the edge set EN . We
represent the structure of the graph by an adjacency matrix
AN ∈ RN×N . When there is an edge between the nodes i
and j, [AN]i,j 6= 0 and [AN]i,j = 0, otherwise. We define
a corresponding normalized graph Laplacian matrix LN =

IN −D
− 1

2

N AND
− 1

2

N , where DN = diag(AN1) ∈ RN×N is
the diagonal degree matrix. Let us collect the DN dimensional
features related the nodes of the graph GN in the feature matrix
ΘN ∈ RDN×N and the graph signal in a vector y ∈ RN .
Given a normalized graph Laplacian matrix LN , we define a
kN th order finite impulse response (FIR) graph filter as HN =∑kN
i=0 αiL

i
N , where αN = [α0, α1, . . . , αN]

T ∈ RkN+1 are
the filter coefficients.

Assume that GN can be factorized as a product of the two
graphs GP = (VP , EP) and GQ = (VQ, EQ) with P and Q
nodes. Let their corresponding normalized graph Laplacian
matrices be the LP ∈ RP×P and LQ ∈ RQ×Q, respectively.
The vertex set of the product graph GN is VN = VP × VQ
with N = PQ and the edge set of GN depends on the type
of product graph [2]. We call GP and GQ as the factors
of the product graph. Let us collect the DP (respectively,
DQ) dimensional features on the graph factor in the matrices
ΘP ∈ RDP×P (ΘQ ∈ RDQ×Q). Consider a signal y ∈ RN
defined on the nodes of the product graph. As the each node
in the product graph is indexed by a pair of nodes in its graph
factors, we have y = vec(Y), where Y ∈ RP×Q.

Given the normalized graph Laplacian matrices LP and LQ
of the product graph factors, we define a product graph FIR
filter as

H(LP ,LQ) =

kP∑
k=0

kQ∑
l=0

hkl
(
LkP ⊗ LlQ

)
(2)

where {hkl} are the filter coefficients and kP and kQ are the
filter orders. Assuming hkl = αkβl and using the properties
of the Kronecker product, we re-write the product graph filter
as

H(LP ,LQ) = HT
Q ⊗HP , (3)

where HP =
∑kP
k=0 αkL

k
P and HQ =

∑kQ
l=0 βlL

k
Q are the

FIR graph filters of order kP and kQ defined on graph factors
GP and GQ, respectively. Here, α =

[
α0, α1, . . . , αkp

]T ∈
Rkp+1 and β =

[
β0, β1, . . . , βkq

]T ∈ Rkq+1 are the filter
coefficients. Given a product graph signal y, the filtered graph
signal ỹ ∈ RN is ỹ =

(
HT
Q ⊗HP

)
y. Upon reshaping ỹ as

Ỹ ∈ RP×Q, we have

Ỹ = HQYHP . (4)

This means that when the product graph filter is factorizable,
filtering a product graph signal is equivalent to filtering the
columns and rows of Y with the graph filters HP and HQ,
respectively.

III. PRODUCT GRAPH GAUSSIAN PROCESS

In this section, we state the data imputation problem on
product graphs and develop a computationally efficient so-
lution leveraging the properties of product graphs and the
Kronecker product of matrices.

Given noisy graph signals on a subset of nodes of a product
graph, we are interested in estimating the signals on the
remaining nodes as a function predictive PDF and obtain
the model uncertainty. In this work, we consider a structured
sampler of product graph signals [11], where selecting a subset
of nodes on the product graph GN is equivalent to selecting a
subset of nodes from its graph factors GP and GQ, respectively.
Then, the subsampled product graph signals from the set of
observed (respectively, unobserved) nodes collected in the
matrices Yo ∈ RPo×Qo (respectively Yu ∈ RPu×Qu) are
given by

Yo = SPYSTQ, and Yu = S̄PYS̄TQ. (5)

The matrices SP ∈ {0, 1}Po×P and SQ ∈ {0, 1}Qo×Q

(respectively, S̄P ∈ {0, 1}Pu×P and S̄Q ∈ {0, 1}Qu×Q) are
the sampling matrices that select graph signals on the subset
of nodes in each graph factor GP and GQ.

We assume the observed product graph signals are noisy.
Let the observed noisy product graph signal be Xo ∈ RPo×Qo

given by Xo = SPYSTQ + E, where Y ∈ RP×Q is the true
graph signal and E ∈ RPo×Qo is the noise matrix with [E]i,j =
N (0, σ2). Given the noisy product graph signal Xo ∈ RPo×Qo

and the graph Laplacian matrices of the graph factors, we
aim to estimate the posterior predictive PDF of the product
graph signals Yu ∈ RPu×Qu . Upon vectorization, using (1),
the matrices Xo and Yu can be equivalently represented as

xo = (SQ ⊗ SP) y + e, and yu =
(
S̄Q ⊗ S̄Q

)
y, (6)

where xo = vec(Xo), yo = vec(Yu) and e = vec(E).
We model the product graph signal Y ∈ RP×Q as the

product graph filtered GP (referred to as PGGP) given by

Y = HQFHP , (7)

where F ∈ RP×Q is the unknown latent variable. We assume
a matrix-variate GP prior on f = vec(F)

f ∼ N (0,Qφ ⊗Pρ) , (8)

with 0 mean and kernel function Qφ ⊗ Pρ parameterized
by the unknowns ρ and φ. Here, the matrices Pρ ∈ RP×P

and Qφ ∈ RQ×Q are the kernel functions, that measure
the similarity between the nodes of product graph factors
GP and GQ using the node features ΘP ∈ RDP×P and
ΘQ ∈ RDQ×Q, respectively. Some popular choices of kernel
functions are squared exponential kernel, Matérn kernel, and
rational quadratic kernel, to name a few. For the multi-domain

1620

data lies on a regular grid (no graph structure), choosing
HP = I and HQ = I boils down to [10]. In contrast, we
incorporate the underlying graph structure using generalized
product graph filter (3) for multi-domain graph data defined
on the product graph.

As the product graph filtering (4) is a linear operation,
from (8), the product graph signal y = vec(Y) follows a
Gaussian distribution as

y ∼ N (0,Σ) (9)

with

Σ =
(
HT
Q ⊗HP

)
(Qφ ⊗Pρ)

(
HT
Q ⊗HP

)T
= ΣQ ⊗ΣP ,

where ΣP = HPPρH
T
P and ΣQ = HT

QQφHQ. From (6)
and (9), the joint PDF of the observed noisy graph signals xo

and the true graph signals yu on the observed nodes is[
xo

yu

]
= N

(
0,

[
Σoo Σou

ΣT
ou Σuu

])
, (10)

with
Σoo = SQΣQSTQ ⊗ SPΣPSTP + σ2I,

Σou = SQΣQS̄TQ ⊗ SPΣP S̄TP ,

Σuu = S̄QΣQS̄TQ ⊗ S̄PΣP S̄TP .

Then the predictive posterior PDF of the graph signals on the
unobserved nodes of the product graph is p(yu|xo,LP ,LQ) =

N
(
ŷu, Σ̂u

)
, with mean ŷu and covariance Σ̂u given by

ŷu = ΣT
ouΣ−1

oo xo,

Σ̂u = Σuu −ΣT
ouΣ−1

oo Σou.
(11)

The mean ŷu of the predictive PDF gives us the point estimate
of the unobserved graph signals and the diagonal entries of
Σ̂u that collects the variance captures the model quantify the
uncertainty.

The predictive posterior PDF depends on the kernel param-
eters ρ, φ and the filter coefficients α ∈ RkP+1, β ∈ RkQ+1,
which are not known and have to be estimated from the
observed data. To find the optimal parameters, we maximize
the marginal likelihood p (xo) = N (0,Σoo) with respect to
the unknown parameters as

arg max
α,β,ρ,φ

− N

2
log(2π)− 1

2
log|Σoo| − xTo Σ−1

oo xo. (12)

The optimization problem in (12) is a non-convex optimization
problem. We solve (12) using an accelerated gradient descent
method implemented as the ADAM optimizer.

Remark 1. Ignoring the underlying product graph structure,
i.e., replacing the product graph filter with HN ∈ RN×N and
the structured sampling matrices in (2) with random selection
matrices (SN ∈ RNo×No and S̄N ∈ RNu×Nu), the PGGP
boils down to the graph Gaussian process [8] (referred to as
GGP).

Ignoring the product graph structure, computing the predic-

tive PDF (11) and learning the unknown parameters (12) for
the both PGGP and GGP involves inverting a Σoo ∈ RNo×No

matrix, which costs about O
(
N3

o

)
flops. In addition, GGP

requires the kernel function in the main memory, which
requires O(N2) storage. Using the properties of Kronecker
product of matrices, PGGP incurs a less computation cost and
storage.

From (10), the covariance matrix Σoo has a Kronecker
structure Σoo = AQ ⊗ AP + σ2I, where AQ = SQΣQSTQ
and APSPΣPSTP are symmetric matrices with eigenvalue
decomposition AP = UPΛPUT

P and AQ = UQΛQUT
Q.

Here, UP ∈ RPo×Po and UQ ∈ RQo×Qo are the eigenvector
matrices and ΛP ∈ RPo×Po and ΛQ ∈ RQo×Qo are the diag-
onal eigenvalue matrices. Then, the EVD of Σoo ∈ RNo×No

is Σoo = U
(
Λ + σ2I

)
UT , where U = UQ ⊗ UP and

Λ = ΛP⊗ΛQ are the eigenvector and the diagonal eigenvalue
matrices, respectively. We can rewrite log|Σoo| and Σ−1

oo as

log|Σoo| =
No∑
i=0

log(λi + σ2)

Σ−1
oo = U

(
Λ + σ2I

)−1
UT .

(13)

Thus the PGGP inference and parameter estimation can be im-
plemented just by computing the EVD of two small matrices,
which costs about O(P 3

o +Q3
o) flops. Furthermore, storing two

kernel functions Pρ ∈ RP×P and Qφ ∈ RQ×Q realted to the
factor graphs requires O(P 2 +Q2) memory.

To summarize, PGGP incurs less computation cost and
storage compared to GGP. A comparison of the average run
time of PGGP and GGP is given in Fig. 1.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed PGGP approach on synthetic and real-world datasets.
We compare the performance of PGGP, which considers the
product graph structure, with GGP, which ignores the product
graph structure under two different settings. In Section IV-A,
we conduct experiments on the data imputation problem.
In Section IV-B, we test the PGGP performance on active
learning, where the learning algorithm sequentially acquires
observations based on a variance obtained from the posterior
predictive PDF.

A. Data imputation and classification

In this section, we evaluate the performance of the proposed
PGGP method on the data imputation task on synthetic and
real-world datasets. Given multi-domain data Y ∈ RP×Q,
we view it as a product graph signal indexed by the nodes
of a product graph GN formed by the Cartesian product of
two smaller graphs GP and GQ. We randomly sample the
graph data on the subset of nodes, add Gaussian noise of
variance σ2 = 0.5, and treat it as a noisy graph signal. We
use xo to compute the predictive posterior PDF of the graph
signals on the remaining nodes (given by mean ŷu ∈ RNu and
covariance matrix Σ̂u ∈ RNu×Nu) from PGGP and GGP [8].
We vary the percentage of the sampled nodes on each graph

1621

Fig. 2: Performance on synthetic and real-world datasets for GSSL (Figs. (a) − (c)) and AL (Fig. (d)) tasks. (a) Synthetic dataset. (b)
AQI dataset. (c) Coil dataset. (d) AL on AQI dataset.

factor and report the quality of the estimate in terms of the
mean absolute error (MAE) and total variance (variance) of
the estimate. Given a true signal yu ∈ RNu on the unobserved
nodes and its predictive posterior PDF, MAE is defined as
1
Nu
‖yu − ŷu‖1, and total variance as 1

Nu

∑Nu

i=1

[
Σ̂u

]
i,i

. For

all the experiments, when the features related to the nodes of
the graph are available, we choose the squared exponential
kernel k (xi,xj) = exp

(
−0.5‖xi − xj‖22/θ2

)
, with unknown

parameter θ as a kernel function (henceforth, referred to as
PPGP with feat.). When the data is not available we choose
the kernel as the identity matrix obtained from one hot encoded
features (henceforth, referred to as PGGP).

In order to evaluate the performance of PGGP we consider
the following synthetic and real-world datasets.

1) Synthetic dataset: We generate a product graph GN with
N = 500 nodes formed by the Cartesian product of the
two graphs GP and GQ with P = 20 and Q = 25 nodes,
respectively. The signal on the product graph y ∈ R500 is the
obtained by taking random linear combinations of eigenvectors
corresponding to the smallest 5 eigenvalues of the normalized
graph Laplacian matrix LN ∈ R500×500. We reshape the
product graph signal y as a matrix Y ∈ R20×25.

2) Coil dataset: Coil data [12] is the collection of images of
different objects collected from multiple views (orientations).
For our experiments, we consider images of 10 different
objects collected from 36 views, where each image is of size
128 × 128. We view each image as the node of a product
graph GN formed by the Cartesian product of a object graph
GP with P = 10 nodes and a view graph GQ with Q = 36
nodes. We view the pixel intensities as the node features, with
which form the k nearest neighbors graphs for GP and GQ. We
cluster the nodes (images) of the object-view product graph
into 6 groups by applying spectral clustering algorithm [13]
on the normalized graph Laplacian matrix LN ∈ R360×360.
We treat the cluster membership as the product graph signal
Y ∈ R10×36.

3) AQI data: We consider the air quality index (AQI)
values and the concentration of different pollutants related to
AQI measured across 20 different locations in India for 180
days [14]. We compute the average AQI and concentration of
pollutants (particulate matter (pm), carbon monoxide (co) and
ozone (o3)) every six days and collect them in the matrices
ΘAQI ∈ R20×30, and Θpm ∈ R20×30, Θco ∈ R20×30,
Θo3 ∈ R20×30. We view the space-time measurements of
AQI as the product graph signal (i.e., Y = ΘAQI) formed
by the Cartesian product of a space graph GP and a time
graph GQ with 20 and 30 nodes, respectively. Furthermore,
we assume the concentration of pollutants as node features,
of which we use a subset of them to construct the graph
factors, and we use the remaining features to learn the kernel
parameters. Specifically, we use the columns of the matrices
Θ1 = [Θpm Θo3] and Θ2 = [ΘT

pm ΘT
o3] as the features and

construct the k nearest neighbor graphs GP and GQ. We use the
rows and columns of Θco (i.e., ΘP = Θco and ΘQ = ΘT

co) as
the node features of GP and GQ to learn the kernel parameters.

In Figs. 1(a), 1(b), and 1(c), we report the average MAE
and variance (averaged over 30 independent realizations of
sampling matrices and corresponding noisy observed product
graph signals) of the PGGP and GGP methods. The figure
shows that the proposed PGGP outperforms the GGP on all the
synthetic and real-world datasets. The superior performance
of PPGP explains the advantage of taking product graph
structure into account in the considered task. Furthermore,
as expected, the MAE and total variance of the proposed
PGGP decreases as we increase the percentage of observed
signals on each graph factor. To demonstrate the importance
of node features, we repeat the experiments on PGGP while
considering graph structure and node features on AQI and Coil
datasets. The results also demonstrate that taking the nodal
features significantly improves the performance of the PGGP.
To summarize, we emphasize that the proposed PGGP method,
which considers the product graph structure, incurs a lower

1622

computational cost than GGP and has a superior peformance
on the considered datasets.

B. Active learning

In this section, we evaluate the performance of the proposed
PGGP method for active learning (AL) in the PGGP setting. In
AL, the learner (or algorithm) starts with one randomly labeled
node and sequentially queries the next node to be labeled or
observed (from the set of unobserved nodes) based on an
acquisition function. By carefully selecting the nodes to be
labeled, AL performs better on learning tasks than randomly
querying the node labels [7], [15].

In the PGGP setting, we start with an observation from a
randomly selected node from each graph factor and compute
the predictive posterior PDF of the signals on all the unob-
served nodes of the product graph using PGGP. We maximize
variance that captures the model uncertainty and select the
next product graph node to be observed as

rt = arg max
i

eTi Σ̂uei, i ∈ Ut (14)

where Ut is the set with all the unobserved nodes in the product
graph at iteration t and ei ∈ RNu is the ith standard basis
vector. Here, iteration index t also corresponds to the number
of observed nodes in the product graph. As each node in the
product graph is indexed by the pair of vertices in each graph
factor, the node index corresponds to pth and qth node in its
graph factors. We then provide the graph signals related to
pth and qth node to the learner and run PGGP inference and
learning with all the observed nodes till the current iteration.
At each iteration, we evaluate the performance of PGGP in
terms of mean and total variance on the remaining unlabelled
nodes. In Fig. 2(d), we compare the performance of active
learning with the random acquisition, where we randomly
select the query nodes from graph factors at each iteration
on AQI dataset. For this data, we add a noise variance σ2 = 1
to the product graph signal Y. The results show that PGGP
is data efficient and requires fewer observations.

V. CONCLUSION

We developed PGGP for multi-domain data imputation and
active learning, wherein PGGP incorporates a product graph
structure into the Gaussian process kernel. We compute a
posterior predictive PDF for imputing missing data whose
mean vector and covariance matrices are computed in closed
form. We have shown that PGGP incurs less computation cost
than GGP. Experimental results on synthetic and real-world
datasets on data imputation and active learning corroborate
the effectiveness of the proposed method.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, May
2013.

[2] A. Sandryhaila and J. M. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Process. Mag., vol. 31, no. 5,
pp. 80–90, Sep. 2014.

[3] S. K. Kadambari and S. P. Chepuri, “Product graph learnings from multi-
domain data with sparsity and rank constraints,” IEEE Trans. Signal
Process., vol. 69, pp. 5665–5680, 2021.

[4] Q. Lu, V. N. Ioannidis, and G. B. Giannakis, “Semi-supervised learning
of processes over multi-relational graphs,” in Proc. of the IEEE Int.
Conf. on Acoustics, Speech and Signal Process. (ICASSP), Barcelona,
May 2020.

[5] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. of the Int. Conf. Lear. Rep., Toulon,
France, Apr. 2017.

[6] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press, 2006.

[7] Y. C. Ng, N. Colombo, and R. Silva, “Bayesian semi-supervised learning
with graph Gaussian processes,” Adv. in Nueral Info. Proc. Systems,
vol. 31, 2018.

[8] F. Opolka, Y.-C. Zhi, P. Lio, and X. Dong, “Adaptive Gaussian processes
on graphs via spectral graph wavelets,” in Proc. Int. Conf. on Artificial
Intelligence and Statistics, Valencia, Spain, Mar. 2022.

[9] S. Flaxman, A. Wilson, D. Neill, H. Nickisch, and A. Smola, “Fast kro-
necker inference in Gaussian processes with non-Gaussian likelihoods,”
in Proc. of the Int. Conf. Mach. Lear, vol. 37, Lille, France, July 2015.

[10] Y. Saatçi, “Scalable inference for structured Gaussian process models,”
Ph.D. dissertation, Citeseer, 2012.

[11] G. Ortiz-Jiménez, M. Coutino, S. P. Chepuri, and G. Leus, “Sparse sam-
pling for inverse problems with tensors,” IEEE Trans. Signal Process.,
vol. 67, no. 12, pp. 3272–3286, June 2019.

[12] S. Nane, S. Nayar, and H. Murase, “Columbia object image library:
Coil-20,” Dept. Comp. Sci., Columbia University, New York, Tech. Rep,
Feb. 1996.

[13] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[14] “Central control room for air quality management, India,” https://app.
cpcbccr.com/.

[15] K. D. Polyzos, Q. Lu, and G. B. Giannakis, “Weighted ensembles for
active learning with adaptivity,” arXiv e-prints, pp. arXiv–2206, 2022.

1623

