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Abstract—A robust adaptive beamforming (RAB) problem of
maximizing the worst-case (the minimal) signal-to-interference-
plus-noise ratio (SINR) over the union of small uncertainty
sets of the desired signal steering vector is formulated and
recast into a quadratic minimization problem with nonconvex
constraints. In existing works, the semidefinite programming re-
laxation technique is applied to approximately solve the quadratic
problem, incurring heavy computational burden or low array
output SINR. Herein, a sequential convex second-order cone
programming (SOCP) approximation algorithm is proposed. In
particular, an SOCP problem is constructed and solved in each
step, and it is shown that the sequence of the optimal values
of the SOCPs is nonincreasing and bounded, and the optimal
solutions of the SOCPs are feasible for the quadratic problem
and converge to a locally optimal solution. Example simulations
are performed to demonstrate the improved performance of the
proposed algorithm in terms of the beamformer output SINR, as
well as the average CPU time and average number of iterations
of the algorithm.

Index Terms—Robust adaptive beamforming, worst-case SINR
maximization, multiple signal mismatch constraints, sequential
SOCP approximation, SDP approximation.

I. INTRODUCTION

In recent years, robust adaptive beamforming (RAB) tech-
niques have been devised to significantly increase the array
output performance and alleviate the array sensitivity caused
by the estimation error and uncertainty in the parameter-
s, in terms of, e.g., maximizing the signal-to-interference-
plus-noise ratio (SINR). The RAB designs output an opti-
mal/suboptimal complex-valued weight vector (known as a
RAB vector), which must efficiently address any imperfect
information about the source, propagation, and sensor array
[1]–[3]. In particular, the optimal RAB vector established in
seminal paper [4] performs well when there is small to medium
mismatch between the true desired signal steering vector and
the presumed steering vector (see also [3, Sec. 2.8]).

This work was supported partially by the National Natural Science Founda-
tion of China (11871168) and Guangdong Basic and Applied Basic Research
Foundation (2022A1515011782).

Among all the modern RAB techniques in the literature,
the worst-case optimization based RAB appears to be popular
and interesting [4]–[9]. For example, the worst-case SINR (the
minimal SINR) over a ball constraint of the error vector was
maximized in [4], and the error vector was the difference
between the actual desired signal steering vector and the
presumed steering vector. Subsequently, the maximin problem
was equivalently converted into a second-order cone program-
ming (SOCP) problem, which was solved very efficiently.
In addition to the signal steering vector errors, interference
nonstationarity, which affects the array data matrix and sample
covariance matrix, was considered in [5]. Thus the problem
of maximizing the minimal SINR over the constraints of two
classes of errors was formulated and solved by reexpressing
it as an SOCP problem.

Assuming that the desired signal steering vector and co-
variance matrix are uncertain and the corresponding un-
certainty set is a general convex compact set, the optimal
RAB design via the maximization problem of the worst-
case SINR over the uncertainty model was studied in [6].
Specifically, it was shown therein that when the uncertainty
model can be represented by linear matrix inequalities (LMIs),
the worst-case SINR maximization problem can be solved
using semidefinite programming (SDP). In contrast, when
the uncertainty set of the desired signal steering vector is
nonconvex, the maximization problem of the minimal SINR
over the nonconvex uncertainty set can be no longer recast
into a convex optimization problem [7], but can be rewritten
as a quadratic matrix inequality problem, which was solved
approximately via a restricted LMI relaxation therein. Besides,
there are many other useful RAB techniques (see, e.g., [3]) that
we cannot review due to the page limit.

When a large uncertainty set is required to model a signifi-
cant mismatch between the actual and presumed signal steer-
ing vectors, or other types of errors, an optimal RAB vector
obtained using the method reported in [4] often causes the
array performance deterioration [8], [9]. In the previous both
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papers, the union of several small uncertainty sets (modelling
a small mismatch between the signal steering vectors) was
employed to replace the large uncertainty set, with the aim
of improving the array performance in terms of the output
SINR. Therein, leveraging on the technique detailed in [4],
the maximization problem of the minimal SINR over the union
of small uncertainty sets was equivalently transformed into a
nonconvex quadratic minimization problem with multiple con-
straints representing the small signal mismatch. A relaxation-
restriction-relaxation method was designed in [8] to address
the quadratic problem while two iterative SDP approximation
algorithms were proposed in [9] to solve the same problem.

In this paper, we present a sequential convex SOCP ap-
proximation algorithm for the previous nonconvex quadratic
minimization problem studied in [8], [9], where SDP-based
approximation algorithms were developed. We claim that the
approximation algorithm exhibits better properties compared
with the existing SDP-based algorithms. Specifically, (i) the
computational complexity of the SOCP in each iterative step
is less than that of the SDP in each step of the iterative SDP
algorithms; (ii) the feasible region of each SOCP is included
in that of the original quadratic minimization problem, which
means that any optimal solutions for the SOCPs are feasible
for the quadratic problem; in contrast, a rank-one solution
for the SDP obtained from a higher-rank solution in the
SDP-based algorithms may or may not be feasible for the
original quadratic problem; (iii) the sequence consisting of
the optimal solutions for the SOCPs converges to a locally
optimal solution. In the simulation, it is demonstrated that
the beamformers generated by the sequential convex SOCP
approximation algorithm and one of the iterative SDP approx-
imation algorithms exhibit equal performances in terms of the
output SINR. However the former algorithm appears to be
faster in the sense that average number of iterations for solving
an instance of the nonconvex quadratic problem is less, along
with a shorter average CPU time.

Therefore, the main contribution of this study is twofold:
(i) An SOCP-based iterative algorithm is designed to solve
the RAB problem with multiple signal mismatch constraints,
which is faster than the existing algorithms; (ii) we demon-
strate that the algorithm outputs a locally optimal solution
for the RAB problem (in fact, the global optimality can be
achieved numerically).

II. SIGNAL MODEL, PROBLEM FORMULATION, AND

EXISTING APPROACHES

A. Signal Model

The array output at instance t is expressed as

x(t) = wHy(t) (1)

where w ∈ C
N is a complex-valued weight vector (RAB

vector), the superscript (·)H denotes the conjugate transpose,
y(t) ∈ CN is the snapshot vector of array observations, and
N is the number of antenna elements of the array. In the point
signal source case, the observation vector is given by

y(t) = s(t)a + i(t) + n(t) (2)

where s(t)a, i(t), and n(t) are the statistically independent
components of the signal of interest (SOI), interference, and
noise, respectively. In (2), s(t) is the SOI waveform and a is
the target steering vector.

Therefore, the output SINR of the beamformer is given by

SINR =
σ2
sw

HaaHw

wHRi+nw
(3)

where σ2
s is the SOI power and Ri+n , E[(i(t)+n(t))(i(t)+

n(t))H ] is the interference-plus-noise covariance matrix. In
practical scenarios, the covariance Ri+n is not available. Thus,
the sample covariance for R = E[y(t)yH(t)]:

R̂ =
1

T

T∑

t=1

y(t)yH(t) (4)

is employed as a compromise. In (4), T represents the number
of training snapshots.

B. Problem Formulation

Often, the true steering vector a is not exactly known in
many applications. In other words, there is always a mismatch
between the true a and the presumed steering vector â.
However, the beamforming vector obtained by maximizing
the SINR (3) with a replaced by â can lead to dramatic
performance degradation of the array. Therefore, to improve
the beamformer performance (e.g., in terms of the output S-
INR), a RAB technique must be considered, and the following
interesting and popular problem of maximizing the worst-case
SINR is adopted herein:

maximize
w 6=0

minimize
a∈A

aHwwHa

wHR̂w
, (5)

where the uncertainty set A is the set of all possible actual
steering vectors. Clearly, it is equivalent to the following
problem:

minimize
w 6=0

wHR̂w subject to |wHa|2 ≥ 1, ∀a ∈ A, (6)

in the sense that if the RAB vector w⋆ is optimal for (6), then
it is also optimal for (5).

In [4], the uncertainty set

A = {a | ‖a− â‖ ≤ ǫ} (7)

is considered, where â is the presumed steering vector with
‖â‖2 = N , and ‖ · ‖ stands for the l2-norm. Then, problem
(6) can be reformulated into the SOCP:

minimize
w

wHR̂w subject to ℜ{wH â} ≥
√
ǫ‖w‖+ 1, (8)

where ℜ(·) means the real part of a complex-valued argument.
When a large uncertainty set A is modelled in a practical

scenario, where a large direction-of-arrival mismatch along
with other types of errors occurs, the RAB problem (6)
becomes more conservative (namely, the radius ǫ is larger
and the feasible set of (6) is smaller) such that a solution for
(6), i.e., an optimal RAB vector, exhibits worse performance
(cf. [8], [9]). In this case, we instead assume that there are

1635



multiple possible presumed steering vectors âm and the new
uncertainty set is defined by

A′ = ∪M
m=1Am, (9)

where

Am = {a | ‖a− âm‖ ≤ ǫm}, m = 1, . . . ,M, (10)

with each ǫm smaller than ǫ (see e.g. Fig. 1 in [8] or [9]), and
M is the number of the multiple presumed steering vectors
âm. It can be observed that the new uncertainty set A′ is
nonconvex, which represents the main difficulty in solving the
corresponding RAB problem (i.e. problem (6)). To avoid trivial
cases, we assume that ǫm > 0 for all m throughout the paper.

It should be noted that

{w | |wHa| ≥ 1, ∀a ∈ A′}
= ∩M

m=1{w | |wHa| ≥ 1, ∀a ∈ Am}. (11)

Therefore, substituting A′ into A in (6), we obtain

minimize
w

wHR̂w

subject to |wHa| ≥ 1, ∀a ∈ A1

...
|wHa| ≥ 1, ∀a ∈ AM .

(12)

Using the same technique reported in [4], the previous problem
is further tantamount to the following problem:

minimize
w

wHR̂w

subject to |wH âm| − 1 ≥ ǫm‖w‖, m = 1, . . . ,M.
(13)

Evidently, the problem cannot be transformed equivalently into
the SOCP:

minimize
w

wHR̂w

subject to ℜ(wH âm)− 1 ≥ ǫm‖w‖, m = 1, . . . ,M,
(14)

which is indeed a convex restriction for (13).

C. Existing Approaches

In [9], problem (13) is solved by relaxing it into

minimize
w

wHR̂w

subject to (|wH âm| − 1)2 ≥ ǫ2m‖w‖2, m = 1, . . . ,M,
(15)

which can be recast into the following problem

minimize
w

wHR̂w

subject to wH âmâ
H
mw = βm

ǫ2mwHw ≤ βm − 2
√
βm + 1, m = 1, . . . ,M,

(16)
and then

√
βm is linearized and the problem is relaxed into

the SDP:

minimize
W ,{βm}

tr (R̂W )

subject to tr (âmâ
H
mW ) = βm

ǫ2mtrW ≤ βm − βm+βl−1

m√
β
l−1

m

+ 1, m = 1, . . . ,M,

W � 0,
(17)

where βl−1
m , m = 1, . . . ,M , are obtained by solving (17)

at iteration l − 1, l = 1, 2, . . . (here, we assume that at
iteration l = 0 the initial point {β0

m} is prefixed by picking up
randomly), and tr (·) represents the trace. In order to solve (16)
(which is equivalent to (13)), the SDP problem (17) is solved
with the solution (W l, {βl

m}) at the lth step with l = 1,
and set l = l + 1; the previous step is repeated, and an
iterative algorithm is formed. When the algorithm terminates,
the output W ⋆ is decomposed into

∑R

r=1 λrwrw
H
r , where R

is the rank of W ⋆, λ1 ≥ · · · ≥ λR > 0 are the eigenvalues and
w1, · · · ,wR are the corresponding eigenvectors, respectively.
Finally, w⋆ =

√
λ1w1 is outputted as a solution for the

RAB problem (13). It should be noted that this solution
may not be feasible for (13), and thus is not necessarily
feasible for (12). We would also like to remark that the worst-
case computational complexity for the SDP problem (17) is
O(N4M2.5) (as stated in [9]).

In [8], the beamforming problem (13) is relaxed into the
following problem:

minimize
w

wHR̂w

subject to (|wH âm| − ǫm‖w‖)2 ≥ 1, m = 1, . . . ,M.
(18)

Then, the relaxed problem is further restricted to the approx-
imation problem:

minimize
w

wHR̂w

subject to wHPmw ≥ 1, m = 1, . . . ,M,
(19)

where matrices

Pm = (ǫ2m − 2ǫm‖âm‖)I + âmâ
H
m, m = 1, . . . ,M. (20)

Then, the SDP relaxation problem for (19) is solved:

minimize
W

tr (R̂W )

subject to tr (PmW ) ≥ 1, m = 1, . . . ,M
W � 0.

(21)

It can be observed that the procedure to obtain a rank-one
solution w⋆w⋆H for (21) is not mentioned therein for a
general M . It should be noted that the solution w⋆ is feasible
for (19) or (18), but not necessarily feasible for (13) (i.e.,
for the original RAB problem (12)) because problem (21) is
relaxation-restriction-relaxation for problem (13).

In this paper, we solve the RAB problem (13) (rather than
the relaxed problem, either (15) or (18)) using a sequential
convex approximation algorithm, where an SOCP (instead of
a computationally heavier SDP) is solved in each iteration,
and the solution for the SOCP in every iteration is feasible
for (13), which eventually leads to a locally optimal solution.

III. A SEQUENTIAL CONVEX APPROXIMATION

ALGORITHM FOR RAB PROBLEM (13)

It can be observed that

|wH âm| = |wH âmâ
H
mwl−1|

|âH
mwl−1|

≥ ℜ(wH âmâ
H
mwl−l)

|âH
mwl−l|

, (22)
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where wl−1 is an optimal solution in the (l−1)-th iteration of
an iterative algorithm for (13) (the initial point w0 is randomly
provided that â

H
mw0 6= 0, m = 1, . . . ,M ). Thereby, the

following SOCP problem is a restriction problem for (13):

min
w

wHR̂w

s.t.
ℜ(wHâmâ

H

m
wl−1)

|âH

m
wl−1|

− 1 ≥ ǫm‖w‖, m = 1, . . . ,M.

(23)
Namely, any feasible solution for (23) is feasible for (13),
which implies that an optimal solution for (23) is always
feasible for (13). Then, (23) is solved, outputing an optimal
solution wl and we set l = l + 1. The steps are repeated
and an iterative algorithm is established for (13). Accordingly,
the proposed sequential convex approximation algorithm is
summarized as follows.

Algorithm 1 A Sequential Convex Approximation Algorithm
for (13)

Input: R̂, {âm}, {ǫm}, ξ;
Output: A solution w for problem (13);

1: let w0 be an initial feasible point; set l = 1 and v0 =
w0HR̂w0;

2: do
3: solve SOCP (23) with the given point wl−1, obtaining

an optimal solution wl and the optimal value vl;
4: l := l + 1;
5: until |vl−2 − vl−1| ≤ ξ

6: output {wl−1}.

Suppose that vl and wl (l ≥ 1) are, respectively, the optimal
value and an optimal solution for (23) in the lth iteration.

Lemma III.1 It holds that vl ≥ vl+1 for l = 1, 2, . . ..

Proof: It can be seen that wl (l ≥ 1) is feasible for (23)
in the (l+1)-th iteration, where wl is an optimal solution for
(23) in the l-th iteration. In fact,

|wlH âm| − 1 ≥ ℜ(wlH âmâ
H
mwl−1)

|âH
mwl−1|

− 1 ≥ ǫm‖wl‖, (24)

where the first inequality can be attributed to (22) while the
second inequality is due to the fact that the optimal solution wl

is also feasible for (23) in the l-th iteration (in other words, the
constraints in (23) must be satisfied at wl). It can be observed
that

ℜ(wlH âmâ
H
mwl)

|âH
mwl|

− 1 =
ℜ(|âH

mwl|2)
|âH

mwl|
− 1 = |wlH âm| − 1

(25)
Combining (24) with (25), we obtain

ℜ(wlH âmâ
H
mwl)

|âH
mwl|

− 1 ≥ ǫm‖wl‖. (26)

This implies that wl is feasible for (23) in the (l + 1)-th
iteration. Therefore,

vl = wlHR̂wl ≥ w(l+1)HR̂wl+1 = vl+1, (27)

for l = 1, 2, . . ., as wl+1 is optimal for (23) in the (l + 1)-th
iteration.

Based on Lemma III.1, we claim that the solution output
by Algorithm 1 is a locally optimal solution because the op-
timal values {vl} correspond to a nonincreasing and bounded
sequence. It follows from [10, page 423] that the worst-case
computational complexity for (23) is given by O(M1.5N2).

IV. SIMULATION RESULTS

Let us consider a uniform linear array of 10 omni-directional
antenna elements (i.e., N = 10) with an inter-element spacing
of half wavelength. The power of additive noise in every
antenna is assumed to be 0 dB. There are two interferers
from directions −5◦ and 15◦, both with an interference-to-
noise ratio (INR) of 30 dB. We suppose that the desired signal
is always present in the training data cell. The training sample
size T is preset to 100. The actual signal impinges upon the
array from the direction of 5◦ while the angle of the presumed
steering vector is 8◦.

We also consider the desired signal steering vector mismatch
caused by wavefront distortion in an inhomogeneous medium
[11, Simulation Example 2], besides the signal look direction
mismatch. Precisely, we assume that the signal steering vector
is distorted by wave propagation effects in the way that
independent-increment phase distortions are accumulated by
the components of the steering vector, and assume that the
phase increments are independent Gaussian variables, each
with a zero mean and standard deviation of 0.03, and they are
randomly generated and remain unaltered in each simulation
run.

In the big uncertainty set (7), we set the radius to ǫ =√
0.5N . It is assumed that in small uncertainty sets (10),

there are five presumed steering vectors (M = 5) with angles
{3◦, 4◦, 5◦, 6◦, 7◦}, and each radius ǫm =

√
0.15N is fixed.

All results are averaged over 200 simulation runs.
The proposed sequential convex algorithm is compared with

the second iterative SDP approximation method detailed in
[9], the single-step SDP relaxation approach reported in [8],
and the SOCP equivalent reformulation for the RAB problem
with the big uncertainty set (7) reported in [4]. In the figures,
the previous four methods are termed in turn as “Proposed
beamformer”, “FLXZZ beamformer 1”, “FLXZZ beamformer
2”, and “VGL beamformer”. Fig. 1 displays the beamformer
output SINR versus the signal-to-noise ratio (SNR). It can be
observed that the proposed beamformer has equal performance
with the FLXZZ beamformer 1, which is better than that of the
FLXZZ beamformer 2 (with a difference of 4 dB), and all the
three beamformers outperform the VGL beamformer under the
previous setups of ǫ and ǫm. The equal performance between
the proposed beamformer and the FLXZZ beamformer 1
implies that both the sequential convex SOCP method and
iterative SDP algorithm output a globally optimal solution for
(13) in the numerical example.

On the other hand, we compare the performance between
the proposed beamformer and FLXZZ beamformer 1 in terms
of the CPU time and number of iterations required to solve
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problem (13). Fig. 2 shows the average CPU time versus SNR
and the average iteration numbers versus SNR. It can be seen
that the CPU time of the proposed method appears shorter,
which is reasonable because an SOCP (as opposed to an SDP)
is solved in each iteration of the proposed method. In addition,
the proposed one requires fewer iterations, which means that it
converges faster. In Fig. 2, we also included the average CPU
time for the FLXZZ beamformer 2. It can be observed that
the beamformer has the least CPU time. This is reasonable
because it is obtained by solving the SDP problem (21) in
a single time, unlike the other two beamformers where the
iterative algorithms are used. However, there is a trade-off
because the array output SINR for the FLXZZ beamformer 2
is worse than that for the other two beamformers (see Fig. 1),
and from an optimization perspective, an optimal solution for
(19) may not be robust feasible for the original RAB problem
(12).
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V. CONCLUSION

In this study, we considered the RAB problem of maximiz-
ing the worst-case (the minimal) SINR over the union of multi-
ple small uncertainty sets of the desired signal steering vector.
The problem was formulated to a quadratic minimization
problem with nonconvex constraints. As opposed to solving
the problem using iterative SDP approximation algorithms, we
proposed a sequential convex SOCP approximation algorithm.
In particular, we showed that the sequence of optimal values of
the SOCPs is nonincreasing and bounded. Furthermore, it was
shown that optimal solutions for the SOCPs are feasible for the
nonconvex quadratic minimization problem and the sequence
consisting of them converges to a locally optimal solution.
Because only an SOCP must be solved in each iterative step
of the proposed algorithm, the (theoretical) computational
complexity is lower than that of an SDP solved in every
iterative step of the existing SDP-based approximation algo-
rithm. By harnessing the proposed approximation algorithm,
we demonstrated the improved performance of the array using
simulations, in terms of the array output SINR, average CPU
time, and average number of iterations required to solve an
instance of the quadratic minimization problem.
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