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Abstract—In this paper, a robust error reduction ratio based
method is proposed for the estimation of nonlinear causality
among dynamic systems. The proposed method copes with the
issue of spurious solutions inherent to the original ERR-based
method. These spurious solutions are removed by considering
a sparse representation of the model coefficient vector. This
sparse representation is recovered using the well-known alternat-
ing direction method of multipliers combined with an optimal
computation of the regularization parameter at each iteration
using the discrepancy principle. The robust ERR-based method
is evaluated in the context of inferring brain effective connectivity
in epilepsy. Results obtained on simulated and real intracerebral
electroencephalographic signals confirm its efficiency.

Index Terms—Error Reduction Ratio, Orthogonal Least
Squares, effective connectivity, ADMM

I. INTRODUCTION

Epilepsy is a neurological disease that affects about 1%
of the population worldwide. It is the fourth most common
neurological disorder and concerns people of all ages. Epilepsy
is generally characterized by repetitive seizures, called critical
periods, which vary in frequency and duration and are the
result of excessive and abnormal activity of cortical nerve
cells in the brain. Around 30% of epileptic patients are drug-
resistant and, in such cases, surgery can be considered. The
goal of pre-surgery is to delineate the epileptic zone (EZ) that
is responsible for the initiation and/or the propagation of the
epileptic seizure. The organization of the epileptogenic zone
often corresponds to that of a network of neuronal ensembles
distributed in potentially distant structures. Thus, identifying
the EZ to be delineated requires not only the identification of
the neural network involved in the epileptic seizure set up
but also in analyzing causal relationships among its nodes
(neuronal ensembles). Intracerebral electroencephalographic
(iEEG) signals are commonly used to measure the cerebral
activity before and during the seizure [1], [2]. It is an invasive
technique which, contrary to scalp EEG recordings, ensures a
relatively high signal to noise ratio and is free from the effect
of volume conduction. Neural activities result from nonlinear

processes, and interactions between neural assemblies tend
generally to be nonlinear rather than linear, an assumption
commonly considered in effective connectivity measures de-
rived from Granger causality index [3]. Brain effective connec-
tivity serves to quantify causal relations among different brain
regions. The error reduction ratio (ERR)-based method [4]–[8]
has already shown promising results in identifying nonlinear
systems and hence nonlinear effective connectivity among
their compartments. It is a dictionary based method where the
signal at hand is decomposed as a linear combination of some
linear and/or nonlinear terms that are chosen from a predefined
dictionary of possible candidate models. Such decomposition
relies on the orthogonal least squares (OLS) algorithm widely
used to solve nonlinear system identification problems. The
retained candidate models in the initial dictionary are chosen
according to an error reduction ratio measure as the ones that
significantly, up to a given threshold, contribute to the signal at
hand. However, despite its efficiency, the ERR-based method
suffers from the presence of spurious terms whose number
is subject to the ERR-related threshold. This fact will, to a
large extent, affect the quality of the system identification.
To cope with this limitation, the ERR-based nonlinear system
identification method is revisited in this paper so that all
spurious models are removed. The modified version of the
ERR-based approach relies on the assumption that only few
but the most significant terms among all retained candidate
models by the ERR-based method are really contributing to
the observed signal. This leads to a sparse representation of the
estimated model coefficient vector. This sparse representation
is recovered here using the well-known Alternating Direction
Method of Multipliers (ADMM) [9]. This paper is organized
as follows: Section II is devoted to the novel methodology we
propose to reconstruct nonlinear signals. Experimental results
on simulated and real iEEG signals are presented in Section
III and discussed. Finally, concluding remarks are given in
Section IV.
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II. METHODOLOGY

Let ym ∈ RT be an intracerebral EEG signal of length T
recorded on the m-th, 1 ≤ m ≤ M sensor where T is the
observation period and M is the number of sensors. The m-th
observed iEEG signal corresponds to the activity of the m-th
brain region. As brain regions are permanently communicating
to set up a specific normal/pathological activity, the activity of
the m-th brain region, ym, is linked to the ones of some other
brain regions. More precisely, assume that ym is decomposed
as a linear combination of a set of Nm time series, denoted
by ỹ

(m)
i , 1 ≤ i ≤ Nm. Each of the latter time series could

be figured out as a function, denoted here by f
(m)
i , encoding

a linear and/or nonlinear combination of a subset of delayed
versions of the acquired iEEG signals {yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

where the indices of these time series and their related time
lags are defined in the sets Ω

(m)
i and Φ

(m)
i , respectively. This

can be expressed as follows:

ym =

Nm∑
i=1

α
(m)
i ỹ

(m)
i +wm

(1)

=

Nm∑
i=1

α
(m)
i f

(m)
i ({yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

) +wm

where α
(m)
i is the i-th decomposition coefficient and wm ∈

R
T is the model residual related to ym. Understanding lin-

ear/nonlinear interactions among brain regions and revealing
the connection strength can be summed up to the identification
of not only the set of signals {yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

but also

to define the Nm functions f
(m)
i and the parameter vector

αm = [α
(m)
1 , · · · , α(m)

Nm
]T associated to ym. Following [5],

the problem is reduced to a dictionary based decomposition
of ym as follows:

ym = Dmαm +wm, ∀m ∈ {1, · · · ,M} (2)

where Dm is a dictionary collecting the Nm times series con-
stituting the signal ym. These times series stand for the most
relevant candidates that can be selected from a known initial
dictionary D = [d1, · · · ,dN ] ∈ RT×N with N being the total
number of candidates. The predefined D dictionary encodes
both the predefined linear and/or nonlinear functions in the set
{yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

. More precisely, the n-th column dn

in D stands for a possible candidate of ỹi, 1 ≤ i ≤ Nm in
equation (1). In fact, dn is defined as a linear and/or nonlinear
mapping of a subset of predefined delayed versions of the
observed iEEG signals. Then, decomposing the signal ym is
reduced to estimate the most relevant columns in D, and their
corresponding coefficients, that are required to fit ym properly
up to an ERR criterion [5]. The OLS algorithm is used to
solve this system identification problem [4]–[6]. To this end,
the matrix D is decomposed as D = UW where U ∈ RT×N

and W ∈ RN×N are orthogonal and upper triangular matrices,
respectively. For the sake of readability, the subscript m will
be dropped from now on keeping in mind that the m-th,
m ∈ {1, · · · ,M}, signal ym is being processed. Now, in

the initial stage of the ERR algorithm [5], all columns of the
initial dictionary D are considered to reconstruct y. Then the
number of these columns is progressively reduced from N to
Nm according to an ERR criterion. More precisely, let’s start
with:

y = Dθ = Uθ̃ =

N∑
n=1

θ̃nun (3)

where θ ∈ R
N is a coefficient vector, θ̃ = Wθ, un is the

n-th column of U and θ̃n stands for the n-th component of
the coefficients vector θ̃. Then decomposing y requires the
identification of a subset Γ = {ukℓ

}kℓ∈{1··· ,N},ℓ∈{1,··· ,Nm}
of the most Nm relevant column vectors of U contributing
to y and their corresponding coefficients θ̃ℓ, 1 ≤ ℓ ≤ Nm.
According to [4]–[6], the elements of Γ are found sequentially
according to their contribution (from the highest to the lowest)
to y. To this end, for the sake of convenience, let D−(0) = D
be the initial dictionary matrix that is used to estimate the
first relevant vector in Γ, uk1

. Then, the matrix D−(ki−1) ∈
R

T×N−ki+1 is a reduced dictionary matrix that will be used
to estimate uki , ki > 1. The matrix D−(ki−1) is obtained by
excluding from D−(ki−2) the column vector corresponding to
the most relevant candidate model defining uki−1. To find this
most relevant column vector in D−(ki−1), a grid search over
the columns of D−(ki−1) is made. More precisely, let Ũki

=
[u1

ki
, · · · ,uN−ki+1

ki
] ∈ R

T×N−ki+1 be the matrix encoding
the most relevant column vectors of U and defined as:

Ũki
= D−(ki−1) − Ũki−1Hki

(4)

where Ũki−1 = uki−11
T
N−ki+1 and H ∈ RN−ki+1×N−ki+1

is a diagonal matrix that can be obtained by solving the
following optimization problem:

Hki
= argmin

Hki

||D−(ki−1) − Ũki−1Hki
||2F s.t.Hki, i,j

∀i̸=j

= 0

(5)
where Hki,i,j is the (i, j)-th entry of Hki and 1N is a N -
dimensional column vector of ones. Once the vector uki is
estimated, the vector θ̃ki

is computed in a least squares sense:

θ̃ki
= argmin

˜θki

||y − Ũki
θ̃ki

||22 (6)

Then, the (N −ki+1)-dimensional ERR vector, denoted here
by e, is defined by:

eki = ΛΨθ̃
⊙2

ki
(7)

where Λ is a diagonal matrix with the vector
[||u1

ki
||22, · · · , ||u1

N−ki+1||22]T as its diagonal,
Ψ = 1

||y||22
IN−ki+1, ⊙ stands for the Hadamard product

(element-wise matrix product), θ̃
⊙2

= θ̃ ⊙ θ̃ and IK is a
(K × K) identity matrix. Note that the ℓ-th component, eℓ,
1 ≤ ℓ ≤ N−ki+1, of the vector eki

quantifies the contribution
power of the ℓ-th candidate model, d

−(ki−1)
ℓ ∈ R

T , in the
current dictionary D−(ki−1). Once the N − ki + 1 ERR
values are computed, then the index of the highest ERR
value, e

(ki)
max, in the vector eki

refers to the position of the
most relevant candidate in D−(ki−1). The above mentioned
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steps are repeated until Nm candidate models are selected
for which the inequality 1 −

∑Nm

i=1 e
(i)
max < ϵ, where ϵ is

a predefined threshold, becomes true. Let us now define
D̄ ∈ R

T×Nm as the dictionary collecting the Nm retained
column vectors of the initial dictionary D ∈ RT×N . Then, in
order to avoid some spurious retained models in D̄ that might
appear due to the choice of the threshold ϵ, the dictionary
D̄ should be refined. To this end, we assume that, among
all retained models, few of them are relevant. This fact
can be characterized through a sparse representation of the
coefficient vector θ. The optimal spurious model-free vector
θ is found by solving the following optimization problem:

θ∗ = argmin
θ

λ

2
||y − x||22 + ||z||1 s.t. x = D̄θ and z = θ

(8)
where λ is a regularization parameter and ||.||1 is the L1-
norm. Such optimization problem can be solved using the
ADMM which minimizes the augmented Lagrangian function
[10] associated to (8) and given by:

L(x, z,θ,v, g,λ) =
λ

2
||y − x||22 + ||z||1 +

ρ1
2
||θ − z||22

+vT(θ − z) +
ρ2
2
||D̄θ − x||22 + gT(D̄θ − x)

(9)

where x and z are auxiliary variables, v and g stand for the
Lagrange multipliers and ρ1, ρ2 ∈ R

∗
+. The update rules of

x,θ are obtained by looking for the stationary points of L in
x and θ, respectively. This leads to :

θ = (ρ1IN + ρ2D̄
TD̄)−1(v + ρ1z + D̄T(ρ2x− g)) (10)

x =
λy + g+ ρ2D̄θ

λ+ ρ2
(11)

Regarding the Lagrange variables, v and g, they are updated
using the ascent-gradient scheme:

vi+1 = vi + ρ1(θ − z), gi+1 = gi + ρ2(D̄θ − x) (12)

where i is the iteration index. As far as the dual variable z is
considered, it is updated as follows:

z = proxϕ,1/ρ1
(θ +

1

ρ1
v) (13)

where prox is the proximal operator handling the non-smooth
part (i.e. L1-norm) in the above augmented Lagrangian
function (equation (9)). It is the shrinkage operator with
soft thresholding initially proposed in [9], with 1

ρ1
as the

shrinking threshold. Regarding the regularization parameter
λ, it is optimally computed, at each iteration, by means of
the discrepancy principle [11]. More precisely, this principle
considers that the regularization parameter is laying in the set
{x : ||x − y||22 ≤ c} where c ∈ R is a coefficient relating to
the noise variance [11] and can be computed by means of the
equivalent degree of freedom method [12] [13]. This leads to:

λ =
||ρ2(y − D̄θ)− g||2√

c
− ρ2 (14)

All variables in the optimization problem are updated alterna-
tively in an iterative way where, at each iteration, each variable
is updated while keeping the other variables fixed to their

last estimate. The optimization process stops either when the
relative error on the estimation of the vector θ between two
successive iterations exhibits a value that is smaller than or
equal to a predefined threshold, or when a maximal number
of iterations is reached.

III. EXPERIMENTAL RESULTS

A. Simulated data

In this section two simulated models were used to evalu-
ate the behavior of the proposed robust ERR-based method
compared to the original ERR-based one. To do so, a linear
multivariate auto-regressive (MVAR) model was first con-
sidered while a nonlinear model was used afterwards. The
simulated data were 1024-point long, corresponding to four
seconds of iEEG signals sampled at 256 Hz. To assess the
signal reconstruction quality of the proposed approach the
mean squared error (MSE) is considered in this study:

MSEm =
1

K

K∑
k=1

||ym − ŷm,k||22 (15)

∀m ∈ {1, · · · ,M} where ŷm,k is the estimate of ym at the
k-th Monte Carlo trial (1 ≤ k ≤ K = 1000) and ŷ = D̄θ∗ is
the estimation of y.

1) Linear Model: The first model is a 5-channel linear
model taken from [14], which simulates neural activity over 5
brain regions. It is expressed as follows:
y1(k) = 0.6y1(k − 1) + 0.655y2(k − 2) + w1(k)

y2(k) = 0.5y2(k − 1)− 0.3y2(k − 2)− 0.3y3(k − 4)

+ 0.6y4(k − 1) + w2(k)

y3(k) = 0.8y3(k− 1)− 0.7y3(k− 2)− 0.1y5(k− 3) +w3(k)

y4(k) = 0.5y4(k− 1) + 0.9y3(k− 2) + 0.4y5(k− 2) +w4(k)

y5(k) = 0.7y5(k−1)−0.5y5(k−2)−0.2y3(k−1)+w5(k)
(16)

where wm ∼ N (0, 1), 1 ≤ m ≤ 5. In this case, forty candi-
dates were collected in an initial dictionary D. This dictionary
was built by concatenating (i) a set of delayed versions of
{yτm

m }1≤m≤5,∀τm ∈ Φm where Φm = {1, · · · , 5} is the set
of their related time lags, and (ii) the set {ỹ(m)

1 , · · · , ỹ(m)
15 }

with ỹ
(m)
i = f

(m)
i (y1

j ,y
1
l ) = y1

jy
1
l , 1 ≤ j, l ≤ 5 and

yξj (k) = yj(k − ξ).
TABLE I

MSE FOR THE ‘5-CHANNEL LINEAR MODEL’

ERR-based method Proposed method
y1 1.862± 0.065 1.886± 0.066
y2 5.252± 0.632 1.434 ±0.040
y3 2.045± 0.203 1.086 ±0.039
y4 6.336± 0.739 1.719 ±0.051
y5 2.929± 0.203 0.346 ±0.013

It can be noticed from Table I that the signal reconstruction
error is substantially lower for the proposed robust ERR-based
method compared to the original ERR-based one. In order
to evaluate the statistical significance of the results in the
context of nonlinear system identification, a Wilcoxon signed
rank test was employed. More precisely, for each signal at
hand, ym,m ∈ {1, · · · ,M} a correlation series was computed
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for both methods, the proposed method (PM) and the ERR-
based one respectively, leading to gPM

m and gERR
m correlation

series respectively. More precisely, the k-th component gℓm,k

of the correlation series gℓm, ℓ ∈ {PM,ERR}, stands for
the correlation coefficient between the estimated signal ŷm

using the ℓ-th method and the true signal ym. The Wilcoxon
signed rank test was then applied to the pair (gPM

m , gERR
m ).

Box plots of the difference between the two correlation time
series em = gPM

m − gERR
m are shown in Figure 1 together

with their corresponding p-values. According to this figure,
the proposed method provides a signal reconstruction that
is more consistent with the ground truth compared to the
conventional ERR-based algorithm. This result is true for all
simulated signals described in equation (17) excepted for y1

where a tiny difference is observed (i.e., quartiles Qi ≈ 0 for
e1, i ∈ {1, 2, 3}). The superiority of the proposed approach
over the original ERR-based one is also statistically confirmed
using the five computed p-values depicted in Figure 1 with
**** since their respective values are all less than 0.0001.

Fig. 1. Box-plots of the difference, em = gPM
m −gERR

m ,m ∈ {1, · · · , 5},
between paired correlation series gERR

m and gPM
m for the five simulated

signals described in (16). p-value ≤ 0.0001 is marked as ****.

2) Nonlinear model: The second model is nonlinear and
has been proposed in [6]. This nonlinear model considers two
signals. Interactions between these two signals y1 and y2

occur in the time intervals [101; 300] and [501; 700]. In fact,
a causal effect from y1 to y2 occurs in the interval [101; 300]
and is modeled through the following equation:

y1(k) = r(k)

y2(k) = −0.07y1(k − 1) + 0.32y1(k − 2)

− y1(k − 1)y1(k − 2) + w1(k) (17)
In addition, a causal effect from y2 and y1 occurs in the
interval [501; 700] as follows:

y1(k) = −0.07y2(k − 1) + 0.32y2(k − 2)

− y2(k − 1)y2(k − 2) + w2(k)

y2(k) = r(k) (18)
where wm ∼ N (0, 0.1), 1 ≤ m ≤ 2, r is a random data
sequence that follows a uniform probability distribution over
[−1; 1]. Regarding the other time intervals, signals y1 and y2

are set equal to r. Twenty-eight linear and nonlinear candidate
models were initially selected as suggested in [6].

TABLE II
MSE FOR THE ‘2-CHANNEL NONLINEAR MODEL’

ERR-based method Proposed method
y1 0.112± 0.010 0.040 ±0.003
y2 0.103± 0.013 0.090 ±0.005

According to Table II, using a nonlinear model, the new
algorithm outperforms the ERR-based method in terms of
signal reconstruction. As previously, the Wilcoxon signed rank
test was applied on the computed correlation series related
to the signals described in equations (17) and (18). Results
confirm again that the difference in the system identification
quality, which is in favor of the proposed approach as already
shown in Table II, is statistically significant for the two
considered signals (i.e., p-values ≤ 0.0001).

Fig. 2. Box-plots of the difference, em = gPM
m − gERR

m ,m ∈ {1, 2},
between paired correlation series gERR

m and gPM
m for the two simulated

signals described in (17), (18). p-value ≤ 0.0001 is marked as ****.

B. Real iEEG data

Real iEEG data were acquired from a female patient, aged
35, at the Epilepsy Unit in Rennes Hospital, France. Twelve
intracerebral electrodes (10-15 contacts) were implanted in
the left temporal, insular, inferior frontal and inferior parietal
regions. A 76-second length portion of recording, sampled at
256 Hz, was considered. We kept only 12 bipolar channels,
corresponding to the brain regions that were the most involved
in the present seizure according to preliminary clinical and
electrophysiological examinations by the clinician. The expert
classified the twelve channels into three different groups.
First, the ‘Onset’ group (O) is the group containing the
channels that were majorly responsible for the initiation of
the seizure since rapid discharges were observed in these
channels. Secondly, the ‘Propagation Internal’ group (PI )
contains the channels related to the regions that are triggered
by the O group. This group can be marginally involved in
the seizure through delayed electrical discharges with lower
intensity in comparison with the channels belonging to the
O group. Hence, the PI group refers to brain regions that
are less epileptogenic, and therefore considered as the one
linking the most epileptogenic zones to those which are the
less epileptogenic. Thirdly, the ‘Propagation Sink’ group (PS)
consists of the brain regions which are mainly triggered by
the O group, and therefore considered as not responsible for
the triggering of the seizure. According to the clinical expert,
the most interesting time period to be considered corresponds
to the onset of the ictal phase, which was estimated to be
around the 20th second. To detect fast transition in our case,
we selected the interval [18s; 22s] just before the beginning
of the seizure where we expected a change in the behaviour
of the studied brain regions.
To classify the channels, each real iEEG signal, ym,
1 ≤ m ≤ M (M = 12) is assigned to either the O, PI

or PS group using a defined threshold ϕth:
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ϕth =
1

2M

M∑
m=1

|ϕm| (19)

where ϕm is defined by ϕm = ODm−IDm

ODm+IDm
with ODm and

IDm stand respectively for the outward and the inward de-
grees of the m-th signal (node) in the estimated brain network.
More precisely, let Θ = [θ1, · · · ,θM ] ∈ R

M×M be the
adjacency matrix associated to the directed graph describing
the estimated brain network. Then, we have [15]:

ODm =

M∑
i=1

Θm,i , IDm =

M∑
i=1

Θi,m (20)

where Θm,i denotes the (m, i)-th entry of Θ. It is noteworthy
that the adjacency matrix associated to a directed graph is
a square asymmetric matrix (i.e., Θi,j ̸= Θj,i). Thus, the
classification rule for a given signal ym is defined by:

ym ∈

 O, if ϕm ≥ ϕth

PI , if − ϕth ≤ ϕm ≤ ϕth

PS , if ϕm ≤ −ϕth

(21)

The clinician’s classification is reported in Table III. The
results obtained by the ERR-based method and the proposed
one are given in Table IV where the correctly classified
channels are written in bold.

TABLE III
EXPERT’S CLASSIFICATION

O group PI group PS group
Bp1-Bp2 Bp6-Bp7 Fp2-Fp3
Cp1-Cp2 Ap6-Ap7 Tp1-Tp2
Pp1-Pp2 Dp1-Dp2
Pp4-Pp5 Cp4-Cp5
Pp8-Pp9
Ap2-Ap3

TABLE IV
CLASSIFICATION USING (A) THE ERR-BASED METHOD, (B) THE

PROPOSED METHOD

(A)

O group PI group PS group
Cp1-Cp2 Bp1-Bp2 Pp8-Pp9
Bp6-Bp7 Pp1-Pp2 Dp1-Dp2
Ap6-Ap7 Pp4-Pp5 Cp4-Cp5

Ap2-Ap3 Fp2-Fp3
Tp1-Tp2

(B)

O group PI group PS group
Bp1-Bp2 Pp4-Pp5 Pp8-Pp9
Cp1-Cp2 Ap2-Ap3 Bp6-Bp7
Pp1-Pp2 Dp1-Dp2 Ap6-Ap7

Cp4-Cp5
Fp2-Fp3
Tp1-Tp2

From Table IV, we observe that both methods were able to
correctly classify Cp1-Cp2 in the O group. Besides, they were
also able to group properly all the PS channels. Moreover,
according to the expert, Pp8-Pp9 showed, contrary to the
present seizure, a delayed involvement in other recorded
seizures. This fact can explain here the classification of Pp8-
Pp9 in the PS group using both algorithms. Similarly, Bp6-
Bp7 has shown a non-involvement behavior in other recorded
seizures of the same patient. This may explain the fact that
this channel was classified in the PS group using the proposed
algorithm. Now, the ERR-based method classified Bp6-Bp7
in the O group, which seems less appropriate. Following
the expert’s opinion, our method outperforms the original
one in the classification of Bp1-Bp2, Pp1-Pp2 and Dp1-
Dp2 channels. To conclude, the proposed approach appears
attractive and more reliable in the identification of brain
regions involved in the seizure onset, which is a crucial point
from a therapeutic point of view.

IV. CONCLUSION

A robust ERR-based algorithm to infer causal interactions
among brain regions in the context of epilepsy, through
nonlinear system identification, was proposed in this paper. It
mainly addressed the issue of spurious solutions often encoun-
tered in the original ERR-based method well-tailored to solve
the nonlinear system identification problem. The proposed
approach relies on the assumption of a sparse representation of
the model coefficient vector. The well-known ADMM method
combined with an optimal computation of the regularization
parameter, at each iteration, was used to solve the optimization
problem at hand. Results on both simulated and real iEEG
data confirmed the reliability of the proposed approach over
the conventional ERR-based one.
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