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Abstract—In this paper we revisit the Time-of-Arrival self-
calibration problem. In particular we focus on imbalanced
problem instances where there are significantly more sources
compared to the number of receivers, which is a common
configuration in real applications. Using an implicit represen-
tation, we are able to re-parameterize the sensor node self-
calibration problem using only the parameters of the receiver
positions. Making the source positions implicit, we show that it
is possible to linearize the maximum-likelihood error around the
measured distances, resulting in a Sampson-like approximation.
Given four unknown receiver positions and a large number of
unknown sender positions, we show that our formulation leads
to algorithms for robust calibration, with significant speed-up
compared to running the full optimization over all unknowns.
The proposed method is tested on both synthetic and real data.

Index Terms—Time-of-Arrival, Sensor node calibration, robust
optimization

I. INTRODUCTION

For many signal-based mapping and positioning applica-
tions we need to perform sensor array calibration as having
accurate receiver-sender node positions are typically a key pre-
requisite [1]. When senders and receivers are synchronized, it
is possible to obtain absolute distance measurements between
senders and receivers by measuring the signal propagation
time. These measurements can be used for self-calibration and
such problems (Time-of-Arrival problems, TOA) have been
studied in a large body of work [2]-[10]. In cases where either
the receivers or sources are unsynchronzed, the problem is
instead called Time-Difference-of-Arrival (TDOA), [11]-[14].

In this paper we focus on the TOA-setting, and consider
the special case where we only have four receivers, which is
the smallest number that allows for self-calibration, i.e. jointly
estimating receiver and source positions.

In many applications these problems are heavily
imbalanced—in the sense that we often have a much
larger number of sources compared to receivers. For example,
a moving continuous sound source might generate hundreds
or thousands of source locations in a very short time frame.
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Fig. 1. Time-of-Arrival self-calibration aims to estimate both receiver r;
and source positions s; from pairwise distance measurements d;;. In many
cases there are significantly more sources compared to receivers. We propose
a source implicitization technique, that allows for receiver self-calibration
without explicitly parameterizing the source. This leads to a simplified error
function, that only depends on the four receiver positions r;.

The main idea in this paper is to eliminate the source positions
from the estimation problem using a novel implicitization
method. This allows us to achieve the same result, while
only optimizing over the receiver positions without explicitly
parameterizing the sources. An overview of the approach is
shown in Figure 1.

II. PROBLEM FORMULATION

The problem we address involves m = 4 receiver positions
r; € R% i 1,...,4 and n source positions s; € R3,
7 =1,...,n. These could for example represent the micro-
phone positions and locations of sound emissions, respectively.
We denote the arrival time of a signal sent from sender j to
receiver i by ?;;, and the time of emission with 7;. If we
multiply the travel time t;; — 7; with the speed v of the signal,
we obtain the distance between the sender and receiver

dij = v(ti; — ) = [lrs =85, (D
where ||.|| denotes the £2-norm. The transmission speed v and
time offsets 7; are assumed to be known and constant. Let d;;
be the measured distances, which we assume to be perturbed
by Gaussian noise and might additionally contain outliers with
substantially larger errors. Recovering the receiver positions
r; and source positions s; from measured pairwise distances
d;; is then known as the Time-of-Arrival sensor node self-
calibration problem.
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The self-calibration problem can be formulated as a robust
optimization problem over the receiver and source positions,

min Y min((r; - s, = dij)? o), @
ij

where we minimize the squared residuals to the measured
distances, truncated at some fixed threshold o € R to prevent
outlier measurements to impact and corrupt the solutions. This
optimization problem concerns 3 - 4 + 3n — 6 variables.! In
applications the number of sources n >> 6 often dominates
the number of receivers, making the optimization of (2)
computationally expensive.

In the next sections we will introduce an implicitization
scheme, where we derive a surrogate problem that approxi-
mates (2) while allowing us to only optimize over the receiver
positions (six degrees of freedom).

III. THE QUADRISONAL TENSOR

Assume that we have four receivers, in any given con-
figuration, and one single unknown source. There will then
exist a condition, that the receiver positions and the four
distances to the source must fulfill. This internal constraint
is called the quadrisonal tensor, and it was first introduced by
Stewenius [6]. Mathematically, we can formulate the setup as

s —s||> =d?, i=1,2,3,4, (3)

where r; is the receiver with distance d; to the source s. To fix
the gauge freedom in the coordinate system we can without
loss of generality choose the receiver positions as

0 1 X9 T4
[fprorsry=1(0 0 a3 a5]. 4
0 0 0

The quadrisonal constraint is then obtained by eliminating
the three coordinates of the source s from the four equations
in (3). Expanding and introducing an extra unknown o we get

[rill? = 2rf's +a =d?, i=1,2,3,4, (5)
a—sls=0. (6)
Equation (5) is linear in s and « and the solution is given by

-1
—2rf 1 di — | ?

O- D) o

—2r{ 1 dj — [[ral®

Taking the solution and inserting into (6) yields a rational
constraint (due to the inverse in (7), and the square of s in
(6)) in terms of {r;}* , and {d;}}_ ;. Multiplying with the
denominator yields a polynomial of degree eight in r; and
four in d;. This is the called the quadrisonal constraint. In [6]
it is shown that this can be written as a scalar product

(T'(r), S5(d)) =0 ®

IThere are six degrees of gauge freedom in the choice of coordinate system
in 3D.

where T(r) € R! is a vector of polynomials in r, and
S(d) € R is a vector with polynomials in the distances d.
The vector T'(r) is the quadrisonal tensor and only depends
on the configuration of the four receivers. Given any 4-tuple
of distances d = (dy, da, ds, d4), the quadrisonal tensor allows
us to easily check whether they are consistent with the four
receiver positions, i.e. if it is possible to exactly trilaterate a
source s that satisfies (3) with the given distances.

A. Source Implicitization

Our goal now is to find a surrogate optimization problem for
(2) that only depends on the measurements d;; and the receiver
positions. One naive approach is to directly use the quadrisonal
constraints from the previous section and minimize the squared
equation residuals from (8). This residual is however purely
algebraic and not geometrically meaningful, which might lead
to biased results. Furthermore, it is unclear how to set the
inlier threshold o in (2) for this type of residual.

First let us consider the maximum likelihood residual, i.e.

4
Enrr(r.d) = min Y (e — s —d;)?. 9)

i=1

This residual is expensive to evaluate (as it requires solving the
optimal trilateration problem). Using the quadrisonal tensor,
we can however reformulate the residual in (9) as

Earr(r,d) = min [d —d|* st (T(x).S(d)) =0, (10)
e 4

i.e. finding the closest set of distances d that satisfies the
quadrisonal constraint. This is equivalent since in this case
we know that there exists an s € R? such that ||r; —s|| = d;,
which will then be the optimal s in (9). The function in (10)
is however still expensive to evaluate, now requiring to solve
a complicated constrained optimization problem. To arrive
at a tractable alternative, we now draw inspiration from the
Sampson approximation [15] which is used to approximate
the distance from points to a given conic. The main idea is
to linearize the complicated constraint in (10) at the noisy
measured distances d and solve the linearized problem, i.e.

Eos(r,d) = min ||d — d|?, (11)
dcR4
st (T(r),S(d) + Js (a - d)> —0, (12)

where the Jacobian Jg € R11*4 is evaluated at d. The problem
is now a quadratic optimization problem with a single linear
constraint, having the closed form solution (see e.g. [15])

(T(r),S(d))

e PN

(13)
This provides a first-order approximation of (9) which is cheap
to compute (only requiring a few polynomial evaluations), and
that only depends on the receiver positions and distances.

1645



IV. RECEIVER CALIBRATION WITH IMPLICIT SOURCES

Using the approximation developed in the previous section
we can now restate the self-calibration in (2) as a minimization
over only the receiver positions as

minz min(Egs(r,d;), 0?)

J

(14)

where r = (I’l7 ro,Is3, I‘4) and dj = (dlj, dgj, d3j, d4j). While
it is now a minimization problem with only six degrees of
freedom, it is still highly non-convex, in particular due the
robust truncation of the residual at o.

To minimize this cost we propose to use a random sampling
based intialization as in RANSAC [16], and in particlar we
propose to use the LO-RANSAC [17], [18] variant which per-
forms additional local optimization in the sampling loop. The
idea is that since we don’t know which of the measurements
are outliers, we randomly select small subsets (in our case the
minimum number is six) of residuals and fit a model to these.
If these were all inliers, the model will be roughly correct
and can serve as a starting point for local optimization. To
ensure robustness, multiple minimal samples are drawn from
which we generate multiple candidates, before performing
local optimization starting from the best one. To estimate the
receivers from six measurements we use the method initially
introduced in [7] and later optimized in [9].

Since any configuration of four receivers can be rigidly
transformed into the form (4) we only need to optimize
over the six parameters (z1,Z2, %3, 24,75, 76) € RS. Once
the receiver positions are estimated, the senders can then be
trilaterated, e.g. using the method from [19].

Implementation Details: The optimization problems are
solved using Ceres [20] in C++. We use the default Levenberg-
Marquardt optimizer, with automatic differentiation to com-
pute derivatives of the objective function. All other code is
written in MATLAB and is run on a Zenbook UM3402YA
laptop with a AMD Ryzen 7 5825U.2

V. EXPERIMENTAL EVALUATION

In the experiments we will compare the classical ML-
estimate Ey7r, (9), optimizing jointly over both r and s, with
our proposed approximation £gs (13), which only depends on
the receiver positions. We compare them both in the context
of model-scoring in RANSAC, as well as for performing local
optimization of both receivers and senders. In the following
sections we first evaluate the approximation error, followed by
a comparison in local refinement and finally in RANSAC for
solving the full TOA problem. Experiments have been done
on both real and synthetic data. Descriptions of the data sets
are included in the following two sections.

A. Evaluation of Quadrisonal Sampson Approximation
We first experimentally evaluate the residual £gg given by
the Quadrisonal Sampson approximation (13) compared to the

2Code is  available at
implicitization-self-calibration.

https://github.com/maltelarsson2/source-
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Fig. 2. The ground-truth receiver and sender positions for the real dataset
used in the experiments.
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Fig. 3. The figure shows the approximation error as a function of the

noise in measurements. Since we linearize around the measurements, the
approximation works better for smaller noise levels.

maximium likelihood residual &£,y (9). In Figure 3 we can
see how the noise level in the data affects the approximation
quality. This is done for simulated data where sender and
receiver coordinates are chosen uniformly from [-2m, 2m],
and to each distance a zero mean Gaussian noise with standard
deviation o 4 is added. We plot the mean of the error for 100
random such data sets with four receivers and 100 senders
each. For noise levels in the distance data up to o4 ~ 0.2m
we get that the quadrisonal sampson approximation lies very
close to that which you would get by trilateration. For larger
errors in the distance data, the proposed approximation under-
estimates the true error residual.

The approximation takes around 5 us to compute per sender
as compared to around 50 us for the trilateration, i.e., it is
around 10 times faster to evaluate.

B. Evaluation of Local Refinement

Next we will compare how well local refinement works
when computing residuals with £gg compared with Eps1,. The
rest of the experiments in this section and the next use a data
set that has been collected in a motion capture lab and consists
of 12 microphones (receivers) and a sound source that moved
around in the room [21]. Figure 2 shows their ground truth
positions. While originally a TDOA-data set, offsets have been
removed using ground truth to simulate TOA measurements.
The distance measurements within 0.05m of the ground truth
are considered to be inliers and the rest as outliers. For the
experiment we select subsets of this data, randomly choosing
four receivers together with a random selection inliers and
outliers. Since the problem degenerates for configurations with
planar receivers, we filter out these from our random selection.
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Fig. 4. The residuals of (2) plotted against time for 10, 100, and 1000 sources. For the case of 10 senders we see that the average values are much worse
using the £gs as compared to Epyr,. This behaviour is not seen in the median. The success rate thus seems to be lower when using fewer senders. This is
not a large problem as the gains of using this approximation is larger for more senders. As we can see in the leftmost plot, the proposed optimizer is only
slightly faster, but with more senders this time gain is much larger. The rightmost graph shows that with 1000 senders we can get similarly accurate results

several orders of magnitude faster.

In Figure 4 we can see the convergence over time, when
having 10, 100 and 1000 senders, respectively. It is run on the
real data set with random choices of senders and receivers.
The receiver initial point is chosen as ground truth positions
with zero mean Gaussian noise with op = 0.05m added to
each coordinate. From this, sender coordinates are trilaterated
(using [19]) as the additional initialization points for the full
optimizer. For 10 and 100 points we show the mean error over
time for 100 random choices of datasets. Due to the longer
run time for the full optimizer we only ran 10 different data
sets with 1000 senders.

We can see that the proposed optimizer is faster overall with
comparable results. Optimizing over the full problem (r and s)
is significantly slower with an increased number of senders—
with 1000 senders it can take from half a minute to several
minutes to get close to convergence. In comparison, the QS-
optimizer runs in less than a second even for 1000 senders,
which is several orders of magnitude faster.

In Figure 5 we can see the success rate for the two
optimizers. They are run on real data with 100 senders and
initial point is chosen by adding zero mean Gaussian noise to
each of the receivers coordinates for some value of op. They
are run for 100 different samples of data sets, and considered
successful if the final value is less than 0.09. For comparison
the ground truth values gave around 0.063.

For small enough values of o the initial point will be close
enough to the real value to already give a solution considered
successful. Still if the QS-optimizer worked poorly it could
technically fail since it only optimizes approximate values.
This is not the case however and we see that both almost
always succeeds for noise levels smaller than o = 0.1. When
we start further away from the initial position we see that
while both succeeds less often, the full optimizer succeeds
much more often than the QS-optimizer.

C. Evaluation of Self-Calibration

In Figure 6 the different RANSAC variants are run on the
real data with 100 inliers and 50 outliers. We consider the
currently best solution over time in the RANSAC loop and
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Fig. 5. Comparison with full refinement of (r, s). The plot shows the success
rate after initializing with noisy initial estimates.
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Fig. 6. Comparison of median RMS error of receivers to ground truth over
time in RANSAC loop for the different solver options.

compute the RMS error of the four distances between this
solution and the ground truth positions. The plot shows the
median values over 200 runs. The baseline RANSAC variant
with local optimization gets the closest result, but also takes
the longest time. The QS-LO variant performs better than the
baseline without LO as it achieves a slightly better result faster.
We used 02 = 0.01 as the threshold in (14) for all experiments
in this section. This worked well but could potentially be
optimized. Using the same setup, if we instead look at the
classification of inliers vs. outliers, we can in Figure 7 see the
F1 score of this classification as a function of time. We can
see that all variants achieve approximately the same value, but
the QS-variants are faster, by a slight margin compared to the
baseline without LO and a few seconds faster than the baseline
with local optimization.

1647



1 .
0.8t —
g 0.6 & = £gs - Only receivers r, LO-RANSAC
2 —— &os - Only receivers r, RANSAC
i 04 == Eprr, - Full problem (r,s), LO-RANSAC
0.2 1 Enr - Full problem (r,s), RANSAC
0 - - - - - - - - - {
0 02 04 06 08 1 12 14 16 18 2
Time (s)

Fig. 7. Comparison of F1 values of inliers vs. outliers over time in RANSAC
loop for the different solver options.

TABLE I
RUN TIMES IN SECONDS FOR DIFFERENT SOLVERS FOR DIFFERENT
NUMBER OF SENDERS. BEST RESULTS IN BOLD.

Method n =10 n = 100 n = 1000

init total init total init total
Emr RS 041 042 0.77 1.1 4.2 150
Emp LO-RS 0.39 0.40 2.0 2.3 340 540
Egs RS 0.37 0.38 042 044 0.66 091
Eqgs LO-RS 033  0.34 0.38 0.41 0.75 0.99

In table I we can see the run time for different amount of
senders for a couple of RANSAC variants: RANSAC using
EML (gML RS), LO-RANSAC using 5]%[, (SML LO-RS),
RANSAC using £gs (Egs RS) and LO-RANSAC using £ggs
(£gs LO-RS). There are times both with and without final
refinement. They are run on real data with 4, 40 and 400
outliers for 10, 100 and 1000 inliers, respectively. For 10
and 100 senders they are average times for 100 runs. Due
to the longer times for 1000 inlier senders, these are only the
average of 3 runs for the £y, LO-RS and 10 runs for the
others. The times are fairly similar for 100 senders and less,
but with 1000 senders there are some differences. €577, RS
without refinement takes a little bit longer than the £gs RS
variants. With this many senders, the speedup from using the
QS-approximation of the errors starts being noticeable. The
Envr, RS with refinement and the £,,7, RS-LO variants are
significantly more time consuming than the QS variants. This
is explained by how much longer time the full optimizers take
compared to the QS-approximation optimizers, as could be
seen in the previous subsection.

VI. CONCLUSION

In this paper we have shown how sensor node calibration
for imbalanced TOA-problems can be significantly sped up,
using a novel implicitization scheme. Using the so-called
quadrisonal tensor, we parameterize such problems using only
six parameters, regardless of the number of sources. In order
to arrive at a geometrically proper optimization problem, we
linearize the problem around the measured data points, using
a Sampson-like approximation. This leads to highly efficient
and robust algorithms for both initialization and refinement,
with negligible accuracy losses, compared to running the full
optimization over all parameters. Here we target the restricted
problem of four receivers, but we believe that our framework
can be extended to larger problem settings in a natural way.
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