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Abstract—Optimal sensor placement for a single source extrac-
tion has been studied recently. In the current paper, a criterion
to optimally placing the sensors for source separation of the
noisy mixtures is proposed. Moreover, it is described how a
blind source separation (BSS) method can be used to estimate the
spatial gains from the measurements of the already placed sensors
to enhance the placement of the remaining sensors. Numerical
simulations show that the proposed criterion outperforms the
previous criterion in source extraction from the noisy mixtures,
and illustrates its efficiency in sensor placement for source
separation.

Index Terms—source separation, optimal sensor placement

I. INTRODUCTION

Optimal sensor placement can be relevant in any application

of using sensors to collect data, and for which the spatial

positions of the sensors affect the performance of the mea-

surement system or the cost of the sensor placement. It has

drawn attentions in areas such as structural health monitoring

[1], [2], source localization [3], [4], municipal water networks

[5], [6] and wireless sensor networks [7], [8].

In a source separation problem, propagated signals from

several sources are measured by sensors, and the goal is to

estimate the latent source signals from the measured data. In

linear source separation with instantaneous mixtures, the mea-

sured signals are linear combinations of the source signals. The

coefficients of this combination typically depends on the signal

attenuation between the sources and the sensors. Consequently,

the spatial positions of the sensors determine the coefficients,

which we refer to as spatial gains. Various methods have been

developed to address this type of source separation problem

[9]. Even when the spatial gains are completely unknown and

the source separation is performed blindly, there are methods

called equivariant blind source separation (BSS) methods,

which lead to the performance independent of the spatial

gains. Examples of equivariant BSS methods include equiv-

ariant adaptive separation via independence (EASI) [10] and

equivariant nonstationary source separation [11]. Therefore, if

an equivariant method is employed, the sensor positions will

not affect the separation performance. However, such methods

are limited to noiseless measurements.

In many real-life applications, the signals measured by

sensors are subject to additive noise. For example, in electroen-
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cephalography (EEG), the recorded signals by the electrodes

contain not only the sources of interest, related to the special

brain events, but also non-event-driven ongoing brain activities

as well as the artifacts caused by irrelevant activities such as

eye blinking, which can be treated as additive noise [12]. In

such cases, by assuming the noise spatial covariance matrix

to be full rank, the sensor positions affect the performance

of source separation, regardless of whether the problem is

blind or not. In fact, considering the noise components as

additional sources, the number of source components exceeds

the number of sensors, violating the assumption required

for equivariant methods. Additionally, it makes the perfect

extraction of the sources impossible, even if the spatial gains

are known. Consequently, finding the optimal sensor positions

to improve the quality of source separation becomes interesting

when dealing with noisy measurements. This paper addresses

precisely this problem.

Recently, research has been conducted on sensor placement

for extracting a single source from noisy measurements. This

work introduces new criteria, based on the signal-to-noise ratio

(SNR) of the linearly extracted signal, that are optimized to

determine the optimal sensor positions [13], [14]. The results

demonstrate that the proposed criteria outperform classical

Kriging based sensor placement approaches in terms of the

output SNR of the extracted signal [14]. However, to the best

of our knowledge, the problem of sensor placement for source

separation of noisy mixtures has not been previously studied.

In this paper, by assuming the prior information about

the spatial gains of the sources to be given by a stochastic

Gaussian Process (GP) model, an optimization criterion based

on the expected value of the signal-to-interference-plus-noise

ratio (SINR) of the separated signals is proposed. Numerical

simulations demonstrate the efficiency of the proposed crite-

rion in sensor placement for source separation. In addition, the

paper illustrates how the recorded data from already placed

sensors can be utilized in the placement procedure to reduce

uncertainty regarding the spatial gains and help the placement

of the remaining sensors.

This paper is organized as follows. In Section II, we present

our proposed method for optimizing sensor placement and

describe the estimation method for the spatial gains using sen-

sor data. Section III provides numerical results and compares

the performance of the proposed method with another sensor

placement approach. Finally, Section IV concludes the paper.
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II. PROPOSED METHOD

In this section, the problem statement, the proposed criterion

for the sensor placement and its optimization approach are

presented. Moreover, a method to estimate the spatial gains

using sensor data to help the placement procedure is described.

A. Linear source estimation model

Assume that P independent sources propagate their signals,

s(t) = [s1(t), s2(t), ..., sP (t)]
T , into a D-dimensional space

X ⊂ R
D , and let ap(x) denote the spatial gain from the p-

th source to the sensor whose coordinates are x ∈ X . The

measured signal by a sensor at time t and coordinates x can

be written as

y(x, t) =

P
∑

p=1

ap(x)sp(t) + n(x, t), (1)

where n(x, t) is additive noise. The measurements are as-

sumed to be an instantaneous noisy mixture of the sources,

meaning that the propagation delay from the sources to the

sensors is negligible, which is a realistic assumption in a

large number of applications, such as electroencephalography.

Let us assume that M sensors are placed at the positions

XM = {x1,x2, ...,xM}. The measured signals y(XM , t) =
[y(x1, t), y(x2, t), ..., y(xM , t)]T can be rewritten as

y(XM , t) =

P
∑

p=1

ap(XM )sp(t) + n(XM , t), (2)

where ap(XM ) , [ap(x1), ap(x2), ..., ap(xM )]
T

is the vector

of the spatial gains of the p-th source at the corresponding

positions, and n(XM , t) , [n(x1, t), n(x2, t), ..., n(xM , t)]
T

is the vector of additive noise.

We assume that the l-th source is estimated linearly using

a vector fl ∈ R
M , that is,

ŝl(t) = fTl y(XM , t) =

P
∑

p=1

fTl ap(XM )sp(t) + fTl n(XM , t).

(3)

To choose the vector f optimally, one way is to find it such

that the SINR of the estimated source is maximized. The SINR

of the l-th estimated source is given by

SINRl(fl,XM ) =

E
[

(fTl al(XM )sl(t))
2
]

E

[

(

fTl (
∑P

p=1,p6=l ap(XM )sp(t) + n(XM , t))
)2

] . (4)

The additive noise is assumed to have zero mean and be

independent of the sources. The variances of the sources and

the covariance matrix of the noise vector (denoted by Cn
MM )

are assumed to be constant over time. Moreover, without

the loss of generality, the sources are assumed to have unit

variances (E[(sl(t))
2] = 1), so their power is assumed to be

embedded in the spatial gains. Then, the SINR in equation (4)

can be simplified as

SINRl(fl,XM ) =

fTl al(XM )al(XM )T fl

fTl

(

∑P

p=1,p6=l ap(XM )ap(XM )T +Cn
MM

)

fl

. (5)

Assuming that the noise covariance matrix is full rank, the

vector f∗l = (
∑P

p=1,p6=l ap(XM )ap(XM )T + Cn
MM )−1al

maximizes (5), and the maximum achievable SINR for the

l-th linearly estimated source is given by

SINRl(f
∗
l ,XM ) =

al(XM )T (

P
∑

p=1,p6=l

ap(XM )ap(XM )T +Cn
MM )−1al(XM ).

(6)

B. Sensor placement criterion

To optimally place the sensors, one can search for the sensor

positions that maximize the sum of the SINRs of the sources,

assuming the spatial gains are known. However, in practice,

perfect knowledge about the spatial gains may not be available.

To address this issue, similar to [14], we model the spatial

gains of each source as a realization of a stochastic Gaussian

Process (GP), that is,

âp(x) ∼ GP (map(x), Cap(x,x′)) . (7)

Here, map(x) represents the mean of the Gaussian random

variable âp(x), and Cap(x,x′) is a symmetric positive-definite

kernel function that specifies the covariance between âp(x)
and âp(x

′). It is assumed that the spatial gains for different

sources are independent of each other. Modelling both prior

information and uncertainty about the spatial gains, and the

ability to generate various signal shapes are from the powerful

properties of the GP. The mean and covariance function of

the GP model, along with the covariance function of the

noise, should be known in advance to utilize this model

for sensor placement. The noise covariance function can be

learned using measurements taken when the sources are not

active, and the GP parameters can be estimated either using

the prior information about the propagation properties of the

environment, or using some rough measurements combined

with the BSS methods and regression techniques.

By assuming a stochastic model for the spatial gains, the

SINR of (6) also becomes stochastic. Therefore, we use the

sum of the expected values of the SINRs of all the sources as

a sensor placement criterion, that is,

J(XM ) =

P
∑

l=1

E

[

ˆSINRl(f
∗
l ,XM )

]

=

P
∑

l=1

E



âTl (

P
∑

p=1,p6=l

âp(XM )âp(XM )T +Cn
MM )−1âl



 .

(8)

Even with the probability distributions of the spatial gains,

obtaining a closed-form expression for the expected values of
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the SINR for each source is not straightforward. Therefore, in

this paper, averaging over the Monte Carlo realizations of the

SINR is used to numerically calculate its expected value. In

other words, using the probability distributions of the spatial

gains, L independent samples of them are generated, and for

each sample of the spatial gains, a sample of the SINR is

calculated using (6). Finally, the expected value of the SINR

is estimated by averaging these L independent samples.

C. Optimization approach

In order to find the points that optimize the criterion,

a practical approach is to perform a grid search over the

available space. Let us assume a grid of T points in the space,

XT = {x1,x2, ...,xT }, as candidate positions to place M
sensors. The set of M points that maximize the criterion (8)

should be found, that is,

X∗
M = argmax

XM⊂XT

J(XM ). (9)

Solving (9) requires a combinatorial search over
(

T
M

)

=
T !

M !(T−M)! possibilities, resulting in a significant computa-

tional cost. To address this issue, the greedy method introduced

in [14] can be employed. This method breaks down the

optimization into smaller sub-problems. In each sub-problem,

the previously placed sensors are assumed to be fixed, and

N new sensors are placed at the points that maximize the

criterion. While this greedy approach does not guarantee an

exact optimal solution, it makes the problem practically solv-

able in terms of computational cost. In each small optimization

problem, the number of possibilities to be explored is less than
(

T

N

)

, which becomes feasible computationally for sufficiently

small values of N .

This step by step sensor placement method can be improved

by another idea, which is called sequential approach in [14]. In

this approach, at each step, the measurements obtained from

the already placed sensors are utilized to estimate the spatial

gains in the placed positions. This reduces the uncertainty

about the spatial gains in the whole available space, and

improves the placement of the remaining sensors. For the

remainder of this section, we assume that an estimation of

the spatial gains at the placed sensor positions is available. A

method for estimating the spatial gains is described in Section

II-D.

We begin with an empty set of the points, and at each

iteration, N < M new positions are selected to place the

sensors until the number of the placed sensors reaches M .

Assume that K sensors are placed at the positions XK =
{x1,x2, ...,xK} in previous iterations. We have an estimation

zp(XK) of the spatial gains for the p-th source obtained from

the data measured by the placed sensors. This estimation can

be expressed as

zp(XK) = ap(XK) + vp(XK), (10)

where ap(XK) is the vector of the true spatial gains and

vp(XK) is the measurement error. The error term is assumed

to be Gaussian with zero mean and independent of the spatial

gains. Therefore, for any N new points XN , the entries of

the vectors âp(XM ) = [âp(XK)T , âp(XN )T ]T and zp(XK)
are jointly Gaussian random variables all together. In order to

exploit the information given by the estimation zp(XK), the

conditional distribution of âp(XM ) given zp(XK) should be

determined. The conditional distribution is also a multivariate

Gaussian and can be fully characterized by the conditional

mean vector and covariance matrix, given by

m
ap

M|K = E[âp(XM )|zp(XK)] =

m
ap

M +C
ap

MK(C
ap

KK +Cv
KK)−1(zp(XK)−m

ap

M )
(11)

and

C
ap

M|K = E

[

||âp(XM )−m
ap

M|K ||22 |zp(XK)
]

=

C
ap

MM −C
ap

MK(C
ap

KK +Cv
KK)−1(C

ap

MK)T
(12)

Here, m
ap

M denotes the mean of âp(XM ), and C
ap

KK , C
ap

MM

and Cv
KK are the covariance matrices of âp(XK), âp(XM )

and vp(XK), respectively. Furthermore, C
ap

MK represents the

cross-covariance matrix between âp(XM ) and âp(XK).
In the same manner, the criterion of (8) can be calculated

using Monte Carlo realization, but with the utilization of

conditional distributions to generate samples of the spatial

gains. Therefore, in each iteration, the optimization problem

to be solved is

X∗
N = argmax

XN⊂XT \XK

J(XK ∪XN |z{P}(XK)), (13)

where J(XK ∪ XN |z{P}(XK)) represents the criterion at

the points XK ∪XN , which is computed using the obtained

conditional distributions.

D. Estimating spatial gains using sensor data

In this section, we present a method for estimating the

spatial gains to help the placement procedure as described in

the previous section. To estimate the spatial gains of a source,

one can suggest inactivating all the sources except the desired

one, but controlling the activation of the sources is often not

available in many applications, e.g. in electroencephalography.

Moreover, it is a hard or inaccurate procedure to estimate the

spatial gains using the signal propagation properties of the

environment. In such applications, the only practical way is to

use sensors measured data. BSS techniques offer the advantage

of not only separating sources from an unknown mixing model

but also estimating the mixing coefficients. Hence, they can

serve as a powerful tool for estimating spatial gains using

sensor data.

The employed estimation approach consists of two stages.

Firstly, a method similar to the principal component analysis

(PCA) [15] is applied to reduce the dimensionality of the

measurements to match the number of sources while mini-

mizing the impact of noise. Secondly, a BSS method is used

to estimate the spatial gains.

Assume that K placed sensors are used to measure Ns

samples. Similar to (2), the measurements can be written as

y(XK , t) = AKs(t) + n(XK , t), t = 1, 2, ..., Ns, (14)
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where AK = [a1(XK), a2(XK), ..., aP (XK)] ∈ R
K×P is the

mixing matrix. This estimation is performed where the number

of the placed sensors is greater than or equal to the number

of the sources. In the first stage, our objective is to find a

transformation matrix H = [h1,h2, ...,hP ]
T ∈ R

P×K with

orthonormal row vectors, in order to transform the measure-

ments into a P dimensional space, that is, ŷ(t) = Hy(t,XK).
To obtain the optimum H, the mean square error (MSE)

criterion,

JMSE(H) = E





∥

∥

∥

∥

∥

AMs(t)−

P
∑

i=1

(hT
i y(XM , t))hi

∥

∥

∥

∥

∥

2


 ,

(15)

is minimized, where
∑P

i=1(h
T
i y(XM , t))hi is the projection

of y(XM , t) onto the subspace spanned by the basis vectors

h1,h2, ...,hP . Assuming the identity covariance matrix for

the sources s(t), the MSE can be simplified as JMSE(H) =
Tr[AMAT

M ] −
∑P

i=1(h
T
i (C

y
KK − 2Cn

KK)hi), where C
y
KK

is the covariance matrix of the measurements, and can be

calculated using measured samples. Therefore, minimizing the

MSE leads to the maximizing
∑P

i=1(h
T
i (C

y
KK − 2Cn

KK)hi)
over the orthonormal vectors hi, i = 1, 2, ..., P . A classi-

cally known solution for this problem is the eigenvectors of

(Cy
KK − 2Cn

KK) that correspond to its P largest eigenvalues.

In the second stage, i.e. BSS, the modified fastICA algo-

rithm for noisy measurements [15] is applied to the trans-

formed measurements in order to separate the sources. For

successful separation, the sources should be independent of

each other and exhibit non-Gaussian distributions. Assume that

ŝ(t) denote the separated source signals. Knowing that the

spatial gains of the p-th source can be written as ap(XM ) =
E[y(XM , t)sp(t)], an estimate of the spatial gains of the p-

th source, â(XM ), is obtained using the sample mean of

y(XM , t)ŝp(t). This estimation can be modelled as zp(XK)
in (10) to be used in the placement procedure. In this paper,

we assume that the estimation error vp(XK) is negligible.

However, we know that it can be a rough assumption in

general, and obtaining the estimation error and studying its

effect in modelling is left as a future work.

III. NUMERICAL SIMULATIONS

In this section, the proposed criterion will be compared with

the expected SNR criterion of [13] in a single source extraction

task in Fig. 1. The performance of the proposed method will

be studied with two different estimation approaches and two

levels of the uncertainty in Fig. 2.

A. Simulation setup

The simulations are performed on either a 1D space with

a grid of 200 points in the interval [0, 1], or a 2D space

with a 40 × 40 grid of the points within a unit square.

The covariance functions of the noise and the GP model of

the spatial gains are assumed to have the form C(x,x′) =
σ2exp(−||x − x′||2/(2ρ2)). The GPs for the spatial gains of

each source, GP (map(x), Cap(x,x′)), share the same param-

eters. The mean function map(x) is generated using a GP with

Fig. 1: Comparing the performance of the proposed criterion

with expected SNR criterion and random placement according

to the improvement of the SINR of a single source versus the

number of the placed sensors, using sequential approach and

perfect estimation of the spatial gains in 1D space.

zero mean, variance parameter σa = 1, and the smoothness

parameter ρa = 0.05 which matches the smoothness parameter

of Cap(x,x′). The variance parameter of Cap(x,x′), which

determines the level of uncertainty, is denoted as σu and varies

across different simulations. The noise is assumed to have

zero mean, and its covariance function parameters are set as

σn = 1 and ρn = 0.2ρa. In each iteration of the sequential

sensor placement, N = 1 new sensor is added. To calculate the

expected value of the SINRs, averaging over L = 20 Monte

Carlo realizations is used. Moreover, for each plot, 100 Monte

Carlo simulations are repeated to obtain the mean and standard

deviation of the desired values.

B. One source extraction

In the first part of the simulations, proposed criterion is

compared with the expected SNR criterion of [13], which is

designed for the optimal sensor placement for a single source

extraction. The scenario assumes the extraction of one source

from a mixture of 5 sources plus additive noise. The criterion

of (8) is modified for the source extraction task, such that only

the expected SINR of the extracted source is used instead of

the sum of them. On the other hand, the expected SNR crite-

rion of [13] uses the SNR of the extracted source as a criterion,

neglecting the impact of other sources on the extracted signal.

Assuming the extraction of the first source, the expected SNR

criterion can be written as JSNR = E
[

âT1 (C
n
MM )−1â1

]

.

Fig. 1 illustrates the output SINR of the extracted source,

obtained from the sensors placed by these two criteria, and

also random placement of the sensors. In random placement,

the sensor positions are selected uniformly and independently

from the available space. The variance parameter of the

covariance function for the spatial gains is set to σu = 0.1.

The sensors are placed in a 1D space, the sequential approach

is used and the estimation of the spatial gains at the placed

positions is assumed perfect, without any error. The figure

demonstrates that the performance of the both criteria is better

than the random sensor placement. For 15 placed sensors,

proposed criterion and the expected SNR criterion of [13]

yield mean SINR of 25 and 15, respectively, indicating that the

proposed criterion outperforms the expected SNR criterion in
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source extraction. That is because the proposed criterion uses

the information of the spatial gains of all the sources, instead

of just the desired one.

C. Performance of the proposed method in source separation

In this simulation, the performance of the proposed method

is studied in terms of the average of the output SINRs

of the separated sources. Two cases are considered: perfect

estimation of the spatial gains and estimation using the BSS

method, both employing the sequential optimization approach.

In the perfect estimation case, it is assumed that the spatial

gains are estimated perfectly without any error at the position

of the placed sensors. Whereas, in BSS estimation, the method

of Section II-D is used to update the estimation of the spatial

gains using the measurements of the placed sensors. For this

estimation, the sources and the noise are assumed to have

the uniform and Gaussian distributions, respectively, and 500
measured samples are used. The number of the sources is 3 and

the placement is performed over a 2D space. Fig. 2 presents

the improvement in the average output SINRs of the separated

sources as the number of placed sensors increases, considering

two levels of uncertainty: a) σu = 0.1, and b) σu = 0.8.

The blue and green curves show the performance of the

proposed method using perfect estimation and BSS estimation,

respectively. Two additional curves are included: The red

curve shows the average output SINRs obtained from the

random placement of the sensors, as explained in the previous

section, and the yellow curve indicates the performance of the

oracle experiment. In the oracle experiment, the spatial gains

are assumed to be deterministic and known throughout the

space, and the SINRs of the sources are not stochastic and

can be directly obtained using (6). This curve serves as an

upper bound for the performance of the proposed placement

method. As illustrated in Fig. 2a, the performance of the

placement using the proposed method is significantly better

than the randomly placing the sensors. For 15 placed sensors,

the average SINR of the proposed method using the BSS

estimation in a low level of the uncertainty ( σu = 0.1) is

43, whereas it is 13 for the random placement. Because of

the estimation error of the BSS estimation method, the green

curve is below the blue curve. In Fig. 2b, as the uncertainty

level increases from σu = 0.1 to σu = 0.8, the average SINR

of the proposed method decreases from 57 to 38 when using

the perfect estimation, and from 43 to 32 when using the BSS

estimation, for 15 placed sensors.

IV. CONCLUSION

In this paper, to tackle with the problem of optimal sensor

placement for linear source separation of the noisy mixtures,

we proposed an optimization criterion based on the expected

values of the SINRs of the separated signals. Moreover, to

improve the prior knowledge of the spatial gains given by the

stochastic GP models, we described a BSS method to update

the estimation of the spatial gains using the measurements of

the placed sensors. Numerical simulations show the efficiency

(a) σu = 0.1 (b) σu = 0.8

Fig. 2: The performance of the proposed criterion with sequen-

tial optimization approach, in two case of the BSS estimation

method and perfect estimation of the spatial gains is illustrated,

and compared with random sensor placement and Oracle

(completely known spatial gains). Two situations are studied:

(a) σu = 0.1, (b) σu = 0.8.

of the proposed method in source separation, and its outper-

forming results in source extraction compared to the criterion

proposed in [13].

REFERENCES

[1] W. Liu, W.-c. Gao, Y. Sun, and M.-j. Xu, “Optimal sensor placement
for spatial lattice structure based on genetic algorithms,” J. Sound Vib.,
vol. 317, no. 1-2, pp. 175–189, Oct. 2008.

[2] D. C. Kammer, “Sensor placement for on-orbit modal identification and
correlation of large space structures,” J. Guid. Control. Dyn., vol. 14,
no. 2, pp. 251–259, 1991.

[3] J. S. Abel, “Optimal sensor placement for passive source localization,”
in IEEE Int. Conf. Acoust. Speech Signal Process. IEEE, 1990, pp.
2927–2930.

[4] N. Sahu, L. Wu, P. Babu, B. S. MR, and B. Ottersten, “Optimal sensor
placement for source localization: A unified admm approach,” IEEE

Trans. Veh. Technol., vol. 71, no. 4, pp. 4359–4372, 2022.
[5] A. Ostfeld et al., “The battle of the water sensor networks (bwsn): A

design challenge for engineers and algorithms,” J. Water Resour. Plan.

Manag., vol. 134, no. 6, Nov. 2008.
[6] J. Berry, W. E. Hart, C. A. Phillips, J. G. Uber, and J.-P. Watson,

“Sensor placement in municipal water networks with temporal integer
programming models,” J. Water Resour. Plan. Manag., vol. 132, no. 4,
Jul. 2006.

[7] Y. Chen, C.-N. Chuah, and Q. Zhao, “Sensor placement for maximizing
lifetime per unit cost in wireless sensor networks,” in IEEE Mil.
Commun. Conf. IEEE, 2005, pp. 1097–1102.

[8] S. S. Dhillon and K. Chakrabarty, “Sensor placement for effective
coverage and surveillance in distributed sensor networks,” in IEEE Wirel.
Commun. Netw. Conf., vol. 3. IEEE, 2003, pp. 1609–1614.

[9] P. Comon and C. Jutten, Handbook of Blind Source Separation: Inde-

pendent component analysis and applications. Academic press, 2010.
[10] J.-F. Cardoso and B. H. Laheld, “Equivariant adaptive source separa-

tion,” IEEE Trans. Signal Process., vol. 44, no. 12, pp. 3017–3030,
1996.

[11] S. Choi, A. Cichocki, and S. Amari, “Equivariant nonstationary source
separation,” Neural Netw., vol. 15, no. 1, pp. 121–130, 2002.

[12] S. J. Luck, An Introduction to the Event-Related Potential Technique,

second edition. MIT Press, 2014.
[13] F. Ghayem, B. Rivet, C. Jutten, and R. C. Farias, “Optimal sensor

placement for signal extraction,” in Proc. IEEE Int. Conf. Acoust. Speech

Signal Process. IEEE, 2019, pp. 4978–4982.
[14] F. Ghayem, B. Rivet, R. C. Farias, and C. Jutten, “Robust sensor

placement for signal extraction,” IEEE Trans. Signal Process., vol. 69,
pp. 4513–4528, 2021.

[15] A. Hyvärinen, J. Karhunen, and E. Oja, Independent component analysis.
John Wiley & Sons, 2001.

1668


