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Abstract—Two primary families of methods exist for under-
determined blind identification (UBI) based on the sparsity of
the source matrix: sparse component analysis (SCA) and k-SCA.
SCA assumes one active source at each time instant, while k-
SCA allows for varying numbers of active sources represented
by k. However, existing k-SCA methods, which claim to solve UBI
problems by accommodating k-sparse sources, predominantly
rely on 1-sparse sources, limiting their effectiveness in real-world
scenarios with high noise levels.

In this paper, we propose an effective and computationally
less complex approach for UBI, specifically focusing on the
challenging case when the number of active sources is equal
to the number of sensors minus one (k = m − 1). Our
approach overcomes limitations by using a two-step scenario: (1)
estimating the orthogonal complement subspaces of the overall
space and (2) identifying the mixing vectors. We present an
integrated algorithm based on the Gram-Schmidt process and
random sample consensus (RANSAC) method to solve both
steps. Experimental results using simulated data demonstrate
the superior effectiveness of our proposed method compared to
existing algorithms.

Index Terms—Blind source separation, Gram-Schmidt, Mix-
ing matrix identification, RANSAC, Sparse component analysis,
Sparsity, Underdetermined blind identification.

I. INTRODUCTION

UNDERDETERMINED blind source separation (UBSS)
aims at separating the source signals from their instanta-

neous linear mixtures when there are more sources than sen-
sors. UBSS is a challenging problem since its mixing matrix
is not invertible [1]. A two-step approach is often adopted to
solve UBSS: (1) underdetermined blind identification (UBI)
to identify the mixing matrix and (2) recovering the source
matrix. In this paper, precise identification of the mixing
matrix is considered, which is more challenging than source
recovery. Sparse component analysis (SCA) is widely used to
address the UBSS problem if the sources are sparse [1]–[3]. A
key issue in SCA is the identifiability condition leading to the
identification of a unique mixing system (up to scaling and
permutation ambiguities). There are two scenarios for SCA
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identifiability. First, the probabilistic approach mostly relies
on a prior distribution for the values and locations of non-zero
elements of the source matrix [4]. Second, the deterministic
approach tries to impose definite conditions on the source and
mixing matrices. This paper relies on the latter approach [2],
[5].

One of the key conditions for deterministic SCA identifiabil-
ity is the number of non-zero elements in each column of the
source matrix, referred to as the sparsity level, k. It has been
shown that the lowest sparsity case corresponds to k = m−1,
where m represents the number of sensors, enabling matrix
identification under the k-SCA identifiability conditions [2].
Despite the explicit proof provided, the proposed UBI algo-
rithm is characterized by its generality and implicit nature.
While several UBI algorithms have been proposed based on
k-SCA conditions [6]–[10], they do not perform well when the
columns of the source matrix share the same sparsity levels.
Additionally, most of these algorithms are not robust to noise
that replaces inactive sources. However, we have proposed a
few approaches to improve the upper bound for the maximum
possible number of non-zero sources in previous works [9],
[11], [12]. Nonetheless, these algorithms are not robust to
noise and are dependent on multiple threshold definitions.

Motivated by the k-SCA theorem [2] and the aforemen-
tioned limitations, this paper presents an integrated, efficient,
and straightforward algorithm specifically designed for the
small-scale UBI scenario when k = m − 1. To estimate the
representative subspace of k-dimensional subspaces, which
corresponds to the complementary orthogonal subspace, we
propose an algorithm that combines the Gram-Schmidt process
and the random sample consensus (RANSAC) method [13].
This algorithm effectively addresses both steps of the prob-
lem, namely, estimating the underlying subspaces and iden-
tifying the mixing matrix. We conducted several simulation
experiments to demonstrate the effectiveness of our proposed
algorithm.

II. PROBLEM STATEMENT

The linear instantaneous mixing system of UBSS, in the
noiseless case, can be expressed as:

X = AS, A ∈ Rm×n, S ∈ Rn×T , (1)

where T represents the number of time (or transformed do-
main) samples, and the m mixture signals (rows of the mixture
matrix, X) result from the linear and instantaneous mixing of
n > m unknown source signals (rows of the source matrix,
S) with an unknown mixing matrix, A. For our purposes, we
present Equation (1) in vector form as follows:
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x(t) =
n∑

q=1

aqsq(t) t = 1, . . . , T, (2)

where x(t) ∈ Rm×1 represents the m mixture values at time
instant t, sq(t) ∈ R1×1 denotes the qth source value at time
instant t, and aq ∈ Rm×1 represents the qth column of the
mixing matrix. By increasing the number of zeros in S at
each time instant, the number of corresponding columns in A
to x(t) can be reduced. The complexity of identifying A varies
depending on the sparsity level. The mixture signals associated
with the same contributing columns of A can be considered
within a k-dimensional subspace. In general, the total number
of joint subspaces is equal to c =

(
n
k

)
. According to the Gram-

Schmidt theorem, if {x1, ..., xk} is a linearly independent
list of vectors, there exists an orthonormal list {e1, ..., ek} in
the space such that span(x1, x2, ..., xk) = span(e1, e2, ..., ek).
To identify the mixing columns or the basis columns of
the subspaces, we can employ the concept of orthogonal
complement subspaces. In the next section, we will explain
the proposed algorithm for identifying these subspaces and
using them to determine the mixing matrix.
Notation. The operators [•, •], ⟨•, •⟩, and |•| represent the horizontal
concatenation of two matrices, the inner product of two vectors, and
the ℓ2-norm, respectively. A vector s is considered k-sparse if it has
k non-zero entries, denoted as |s|0 = k. Let J = j1, j2, . . . , jb be the
indices of the b selected columns of X. The submatrix of X formed
by selecting all rows and columns from j1, j2, . . . , jb is denoted as
X(:, J). A similar notation is used to indicate the selection of a matrix
from a tensor, denoted as X (:, :, J).

III. PROPOSED ALGORITHM

In this paper, we propose a RANSAC-based subspace search
algorithm to address the UBI problem when k ≤ m − 1.
The framework overview is depicted in Fig. 1. The algorithm
comprises two stages, each represented by a separate block
in Fig. 1. The objective of the first stage is to identify the
orthogonal complement subspaces (OCSs) through a subspace
search algorithm that combines the Gram-Schmidt process
with the RANSAC method. This stage aims to estimate the
underlying subspaces that contribute to the observed mixture
signals. In the second stage, a similar procedure is employed
to identify the mixing matrix. The goal here is to determine the
columns of the mixing matrix that correspond to the identified
OCSs obtained from the first stage. Overall, our algorithm
offers a comprehensive approach for solving the UBI problem,
leveraging the power of RANSAC and the Gram-Schmidt
process in both stages of the algorithm.

Cluster into c groups Cluster into n groups
X P Â

Fig. 1: The block diagram illustrates the proposed algorithm for
identifying the mixing matrix, A ∈ Rm×n. In the first stage, the
output consists of c orthogonal complement subspaces (OCSs) of the
underlying subspaces, denoted as P ∈ Rm×b×c, where b = m− k.

A. Identifying the orthogonal complement subspaces
The proposed algorithm aims to identify the orthogonal

complement subspaces of a k-dimensional space given the

input X and the value of k. In this problem, each column
of X is assumed to lie approximately on the union of multiple
k-dimensional linear subspaces spanned by corresponding
columns of the mixing matrix A. Therefore, the first step in
solving this problem is to estimate these subspaces.

To accomplish this, a robust model is fitted to the columns
of X using the RANSAC algorithm. RANSAC is an iterative
approach that allows for the extraction of model parameters
from observed data, even in the presence of outliers [13]. By
iteratively fitting the model to the observed data, the algorithm
can robustly estimate the subspaces that best represent the
columns of X.

The RANSAC algorithm is employed to address the UBI
problem by utilizing fitting, distance, and degenerate functions
(equations (3)-(5)). Given that there are c =

(
n
k

)
subspaces,

each spanned by k basis vectors, it is necessary to repeat the
RANSAC process at least c times. This repetition is crucial to
ensure the estimation of all c subspaces and the successful
clustering of an adequate number of data points in each
iteration.

We utilize the Gram-Schmidt process to design the fitting
function, which is used to define a model based on the
observed data. The fitting function performs model fitting by
selecting l randomly sampled data points and applying the
following procedure:

P̂ = Im×m − GS([x1, ..., xl]) ∗ GS([x1, ..., xl])T, (3)

where GS represents the Gram-Schmidt process, I ∈ Rm×m

denotes the identity matrix, Xsel = [x1, ..., xl] ∈ Rm×l

represents a submatrix of X containing l randomly selected
columns, and P̂ ∈ Rm×m represents the pseudo orthogonal
complement subspace of the selected data points. The Gram-
Schmidt process is a method used to construct an orthogonal
basis from a set of linearly independent vectors [14].

In order to ensure that the randomly selected columns
are not in a degenerate configuration, we use a degenerate
function, defined as follows:

r = rank(Xsel), (4)

where the degenerate function measures the rank of the
selected columns in Xsel, denoted as rank(Xsel). If the rank
is less than l, it indicates that Xsel is in a degenerate configu-
ration, as it does not contain l linearly independent columns.
It is important to note that in Algorithm 1, l is equal to the
sparsity level (l = k), whereas in Algorithm 3 discussed in
subsection III-B, l is set to m− 1.

The distance function, also known as the score function,
plays a crucial role in evaluating the quality of a candidate
solution. It provides the indices of inlier data points and
measures the distance between X(:, J) and P̂, where J ⊆ {t ∈
N | 1 ≤ t ≤ T} is a subset of indices corresponding to
the current set of inliers (refer to Algorithm 1). Essentially,
the distance function quantifies how closely a given candidate
aligns with the subspace P̂. It accomplishes this by computing
the projection of a data vector xj = X(:, j) (where j ∈ J)
onto P̂. The projected vector, denoted as projxj

P̂
, represents the
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closest vector in P̂ to xj . Thus, the minimum distance between
xj and the subspace Ŵ = P̂

⊥
can be expressed as ||projxj

P̂
||.

Considering that P̂ is the orthogonal complement subspace
spanned by l basis vectors, the distance function employs the
projection onto the row space to define the distance as follows:

dj =

m∑
i=1

⟨P̂(i, :)T, xj⟩2, (5)

where P̂(i, :) represents the ith row of P̂. If the computed
distance dj is smaller than the predefined thresholds (Th1 or
Th2), it indicates that the selected data point xj is closely
aligned with Ŵ and is considered an inlier. Smaller distance
values correspond to higher score values, indicating a stronger
alignment.

The algorithm block diagram is illustrated in Fig. 2. After
obtaining the inlier data through RANSAC in each iteration,
singular value decomposition (SVD) is applied to decompose
the inlier data and estimate the orthogonal complement sub-
spaces. The candidate set of inlier indices is then updated by
removing the indices of the identified inlier data points from J.
The pseudo-code for the algorithm is provided in Algorithm 1.

RANSAC using
Eq. (3)-(5)

Find OCSs via
SVD of X(:,Y)

Update J by
J← J\Y

X Y P

J

Fig. 2: The block diagram in Algorithm 1 illustrates the process of
finding the orthogonal complement subspaces (OCSs), denoted as P .
The algorithm iteratively repeats this process until all the OCSs have
been estimated.

Algorithm 1 Identification of the orthogonal complement subspaces
based on RANSAC-based subspace search

Initialization: Th1 (distance threshold for RANSAC).
Input: X (mixture matrix), n (number of sources), and l = k
(sparsity level).
Output: W ∈ Rm×k×c and P ∈ Rm×(m−k)×c.
1: Assign an initial set of inlier indices, J ← {1, . . . , T} ({j ∈
N | 1 ≤ j ≤ T}).
for i = 1 to c =

(
n
k

)
do

2: Apply RANSAC method to X(:, J) following equations (3)-
(5) to obtain the indices set of the inlier points ← Y ⊂ J.
3: Decompose X(:,Y) to UΣVT using SVD and find the
subspace, W(:, :, i) ← U(:, 1 : k) and orthogonal complement
space, P(:, :, i)← U(:, k + 1 : end).
4: Update the set J by removing the elements belonging to Y
from J, i.e., J← J\Y ({j ∈ J | j ̸∈ Y}) where (•\•) stands for
set subtraction.

end for

Remark. The number of iterations, N , plays a crucial role in
achieving the desired outcome in the RANSAC process. In each
trial, there is a probability ω of selecting an inlier. The probability of
selecting a sample subset with outliers in all N trials can be calculated
as (1− ωl)N , where l is the minimum number of samples required
for fitting. The success probability of a RANSAC run can then be
expressed as 1− (1− ωl)N . Consequently, the expected number of
iterations can be determined as follows:

E[N ] ≈ log10(1− Pr(sucsess))
log10(1− ωl)

. (6)

Based on equation (6), when the success probability, Pr(sucsess),
is set as a constant pr, the expected number of iterations increases as
the subset sample size l and the percentage of outliers increase. This
increase in iterations adversely impacts the complexity. As a result,
for large-scale problems, this approach is not optimal or practical due
to the excessively high number of required iterations.

B. Identifying the mixing matrix
Algorithm 1 is designed to identify c orthogonal comple-

ment subspaces, denoted as P ∈ Rm×(m−k)×c. Each column
of A (i.e., aq) lies in the intersection of f =

(
n−1
k−1

)
subspaces

spanned by columns of A that involve aq . Consequently, the
mixing vector is orthogonal to the f orthogonal complement
subspaces. To address the second stage of UBI, the approach
involves finding and clustering the normal vectors to the f -
combination of c orthogonal complement subspaces. This can
be achieved by estimating the eigenspaces through eigenvalue
decomposition (EVD) of the covariance matrix for each f
orthogonal complement subspace. The algorithm proceeds by
calculating the minimum eigenvalues and their corresponding
eigenvectors, sorting them, and selecting the n eigenvectors
corresponding to the n minimum eigenvalues. The detailed
procedure is presented in Algorithm 2.

Algorithm 2 Identification of the mixing matrix based on EVD

Input: P ∈ Rm×(m−k)×c (orthogonal complement subspaces
identified using Algorithm 1).
Output: Â: estimated mixing matrix.
1: Find all possible f -combinations of the set C = {1, . . . , c}, i.e.,
G =

(C
f

)
, where f ←

(
n−1
k−1

)
. G(:, j) ← jth f -combination of C

where j = 1 to g =
(
c
f

)
.

for j = 1 to g do
2: Psel ← P(:, :,G(:, j)).
3: Psel ← [Psel(:, :, 1), ...,Psel(:, :, f)] ∈ Rm×f.(m−k) .
4: Build R← PselPT

sel.
5: Apply EVD on R and obtain the minimum eigenvalue,
Λ(j)← λ1 and its corresponding eigenvector E(:, j)← e1.

end for
6: Choose n eigenvectors that correspond to n minimum values of
Λ. These n eigenvectors constitute the estimated mixing matrix,
Â.

To overcome the exponential computational cost associated
with calculating all possible f -combinations of the set C =
{1, . . . , c}, an alternative algorithm with lower computational
complexity is required to identify the mixing matrix. One
such solution is the subspace selective search (S3) algorithm,
proposed in our previous work [9]. In S3, the mixing vectors
are identified through a selective search process, detecting as
few as m subspaces. While S3 exhibits high accuracy and
speed in noiseless scenarios, it struggles in the presence of
noise and outliers due to the requirement of defining multiple
thresholds (see Algorithm 3 in [9]).

In this paper, we address the challenge of capturing noisy
scenarios and removing outlier data points by employing a
RANSAC-based subspace search for the identification of the
mixing matrix. The proposed approach, presented in Algo-
rithm 3, provides an integrated solution to the UBI problem
by leveraging a unified approach for both stages of the
problem. Notably, Algorithm 3 utilizes equations (3)-(5) as
the RANSAC functions with l = m− 1.1671



Algorithm 3 Identification of the mixing matrix by RANSAC-based
subspace search

Initialization: Th2 (distance threshold for RANSAC), l = m− 1
(the number of selected columns), e ← 0, â ← ∅, nÂ ← 0 and
Th3 (distance threshold for the generative clustering).
Input: P ∈ Rm×(m−k)×c (orthogonal complement subspaces).
Output: Â ∈ Rm×n (estimated mixing matrix).
1: Assign an initial set of inlier indices, J ← {1, . . . , c} ({j ∈
N | 1 ≤ j ≤ c}).
2: P ← [P(:, :, 1), ...,P(:, :, c)] ∈ Rm×(m−k).c.
while nÂ < n do

3: Apply RANSAC method to P(:, J) following equations (3)-
(5) and obtain the indices set of the inlier data points ← Y.

if Y ̸= ∅ then
4: e← e+ 1.
5: Decompose P(:,Y) to UΣVT using economy-size SVD
and find the normal vector, PA(:, e) ← U(:,m) where U(:
,m) corresponds to minimum singular value.
for i = 1 to e do

6: If e = 1 then â1 ← pA
i = PA(:, e) and nÂ ← 1

otherwise find absolute cosine distance values between
pA
i = PA(:, e) and ∀ âj employing equation (7), where

j = 1 to n̂ and n̂ is the number identified mixing vectors.

7: Obtain the minimum distance, D = min(ACD), âm ←
the closest vector to pA

i , and sign of ⟨âm, pA
i ⟩ ← s.

if D < Th3 then
8: Update âm by âm ← âm+s.pAi

2
.

else
9: Generate a new mixing vector, ân̂+1 ← s.pA

i ; nÂ ←
n̂+ 1.

end if
end for

end if
10: J ← a random permutation of the integers from 1 to c
inclusive.

end while

In Fig. 1 (right block), the RANSAC method takes the
orthogonal complement subspaces obtained from Algorithm
1 as input. By utilizing the RANSAC-based selective search
instead of exploring all possible f -combinations of C, the
computational cost of Algorithm 2 is effectively mitigated,
leading to faster identification of the mixing vectors. In each
iteration, the normal vectors of the inlier data are compared
with those identified in previous iterations. If a new vector is
discovered, a new cluster and vector are generated. We employ
a generative clustering method proposed in [9], which utilizes
the absolute cosine distance (ACD) to measure the distance
between vectors.

ACD(aj ,pA
i ) = 1− cos(θ), cos(θ) =

aT
jpA

i

||aj || ||pA
i ||

, (7)

where aj represents the jth mixing vector and pA
i denotes

the ith normal vector of the inlier subspace (step 6 in Al-
gorithm 3). The three-stage process, consisting of RANSAC,
normal vector finding, and generative clustering, is repeated
until all n mixing vectors are successfully identified.

IV. SIMULATIONS AND RESULTS

The method proposed in [15], [16] utilizes the Gaussian
mixture model (GMM) to generate the sources, allowing for

sparser vectors such as 1-sparse in addition to k-sparse vectors.
This flexibility simplifies the problem by leveraging sparsity.
In contrast, our approach tackles a more challenging scenario
where exactly k = m − 1 sources are active at each time
instant. However, the inactive components are not constrained
to be zero, and instead, Gaussian noise with a small standard
deviation σoff ≪ 1 is considered over the inactive elements.

In the first experiment, we consider a noiseless UBI problem
with a mixing matrix described in [6]. The parameters are set
as m = 3, n = 5, k = 2, T = 2000, and σoff = 0. We
evaluate the identification error using the biased angle sum
(BAS) [17] and the Frobenius norm of the error matrix [6]. The
BAS measures the sum of deviation angles (•◦) between the
original and estimated mixing vectors, calculated as follows:

BAS(A, Â) =
180

π

n∑
i=1

arccos(
⟨ai, âi⟩

||ai|| ||âi||
), (8)

where A = [a1, . . . , an] and Â = [â1, . . . , ân] are the original
and the estimated (optimally ordered [18]) mixing matrices,
respectively.

Based on the results presented in Table I, it is evident
that the proposed algorithm surpasses both state-of-the-art
algorithms in terms of average identification error and running
time across 100 trials.

TABLE I: Performance comparison of the proposed algorithm and
existing methods for the UBI problem presented in [6].

Method BAS [•◦] ||A − Â||F Time [s]

Adaptive k-plane clustering [6], [19] 0.2088 0.2018 3.31

Partial k-subspace clustering [15] 0.0130 0.0061 7.33

Proposed Algorithm ( 1+ 3) 1.2× 10−5 5.9× 10−6 0.10

The second experiment evaluates the performance of the
algorithm for different values of [m,n] and varying levels of
σoff when k = m − 1. The mixing vectors are randomly
generated from a normal distribution and normalized to have
a unit norm.

Fig. 3a shows the average identification errors on a loga-
rithmic scale for different [m,n] values and three levels of
σoff over 100 trials. The results demonstrate the robustness
of our algorithm in the presence of noise on inactive sources.
As n and σoff increase, the identification error also increases,
but the orientations of the identified vectors remain accurate
(with BAS < 0.01◦). In Fig. 3b, we compare our algorithm
with the algorithm presented in [15] for the noisy case with
σoff = 0.001. To ensure a fair comparison, we only consider
cases where the initial parameters of the algorithm in [15] are
properly selected. The results show that our algorithm achieves
more accurate identification of the mixing vectors. It is im-
portant to note that the BAS calculation in Fig. 3b excludes
inaccurately identified vectors (with deviation angle ≥ 0.1◦).
The values above the markers represent n̂, which is the average
number of accurately identified vectors out of 100 trials.
Unlike the algorithm in [15], our proposed algorithm is capable
of identifying almost all mixing vectors accurately. Based on
these results, we can conclude that our algorithm offers higher
identification accuracy, less sensitivity to initial parameters,
and reduced running time.
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(a)

Proposed Algorithm

Algorithim in [15]

(b)

Fig. 3: a) Identification error of our algorithm across different [m,n]
values for varying levels of σoff ; b) Comparison of our algorithm
with the algorithm in [15] across different [m,n] values for the noisy
case with σoff = 0.001. The values above the marker indicate the
average number of accurately identified vectors.

V. DISCUSSION AND CONCLUSIONS

In general, k-SCA methods, which consider k ≤ m − 1
(where m is the number of sensors), are more constrained
compared to ℓ1-minimization and overcomplete dictionary
learning methodologies [5], [20] under the assumption of
k < spark(A)

2 . In this paper, we propose a new k-SCA algorithm
for identifying the mixing matrix using the Gram-Schmidt
and RANSAC approaches. Our algorithm outperforms ex-
isting methods for two main reasons. First, unlike single
dominant component-based methods [1], [21]–[23] which fail
when there are insufficient 1-sparse sources and highly sparse
components, our algorithm performs well when k = m − 1
sources are active at each time instant. This means that
our algorithm can handle scenarios where most sources are
active simultaneously. Second, unlike k-hyperplane [6] and k-
EVD [17] clustering methods that rely on the normal vector,
our algorithm estimates orthogonal complement subspaces,
enabling the handling of multiple dominant SCA. Additionally,
it exhibits relative robustness to noise in inactive sources due
to the RANSAC process.

In the second step of our algorithm, we propose a method
similar to subspace identification to avoid combinatorial ex-
plosion. However, this method is not suitable for large-scale
problems within a desirable time frame due to the exponential
growth in RANSAC iterations (N ). Consequently, solving
large-scale k-SCA problems remains an open challenge. Ad-
ditionally, our method relies on a few parameters, such as
Th1 and Th2, which need adaptive estimation based on
σoff and the number of subspaces. One potential solution to
overcome these limitations is to utilize an optimization method
for estimating these thresholds. As a potential application,
our k-SCA algorithm may extract k-dimensional subspaces in
electroencephalography (EEG) microstate analysis, enabling
the capture of complex interactions among brain regions and
enhancing our understanding of brain dynamics and functional
connectivity [24], [25].
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