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Abstract—In this paper, we consider a double-RIS (D-RIS)
aided MIMO system, where one RIS is deployed closer to
the transmitter and another is placed closer to the receiver.
We show that the received signals in flat-fading D-RIS aided
MIMO systems can be represented as a 4-way tensor satisfying
a nested PARAFAC decomposition model. Exploiting such a
structure, a closed-form channel estimation method is proposed,
where two out of three channels are estimated in parallel
using the low-complexity Khatri-Rao factorization technique.
Furthermore, we propose an alternating least squares (ALS)-
based channel estimation method with an efficient initialization.
The simulation results show that both proposed methods have a
comparable performance as long as the identifiability conditions
of the Khatri-Rao factorization are satisfied. The proposed ALS-
based method can achieve a satisfactory performance with less
training overhead. Moreover, the proposed ALS-based method
performance can further be improved by using the Khatri-Rao
factorization as an initialization.

Index Terms—Double RIS, nested PARAFAC decomposition,
Khatri-Rao Factorization, channel estimation.

I. INTRODUCTION

Recently, reconfigurable intelligent surfaces (RISs) have
been proposed as one of the key technologies to achieve smart
radio environments. An RIS is a 2D surface equipped with
a large number of tunable units that can be realized using,
e.g., inexpensive antennas or metamaterials and controlled in
real-time to influence the communication channels without
generating its own signals [1]. Therefore, RISs have a great
potential for improving the efficiency, the communication
range, and the capacity of future wireless communication
systems.

Most of the prior work, e.g., as in [2]–[6], [8], [9], con-
sidered single RIS-aided (S-RIS) systems, where a transmitter
communicates with one receiver, or more, via a single RIS-
aided channel. In such scenarios, it is shown that the S-
RIS should be either deployed closer to the transmitter or
closer to the receiver to achieve the best performance gain
[7]. On the other hand, in many application scenarios, the
transmitter might need a multi-RIS-aided channel to achieve a

The authors gratefully acknowledge the support of the German Research
Foundation (DFG) under grant no. HA 2239/14-1 (AdAMMM), grant no. ZH
640/2-1 (AdAMMM) and CAPES/PROBRAL Proc. 88887.144009/2017-00,
CAPES/PRINT Proc. 88887.311965/2018-00.

successful communication with the receiver. Among the multi-
RIS-aided systems, the double-RIS (D-RIS)-aided ones have
started to receive more attention, with the main focus on the
RIS reflection design under the assumption of perfect channel
knowledge as in [10], [11]. In [11], the passive beamforming
gain of a D-RIS-aided systems, where one RIS is deployed
closer to the transmitter and another is placed closer to the
receiver, is compared to S-RIS-aided systems by exploiting the
cooperative beamforming over inter-RIS channels. It is shown
that D-RIS-aided systems can achieve a beamforming gain
of O(N4) as compared to O(N2) with S-RIS-aided systems,
where N is the total number of reflecting elements in the
system.

On the other hand, channel estimation in D-RIS-aided
systems is more problematic, since the cascaded (effective)
channel contains three parts as compared to two in S-RIS-
aided systems [11]–[14]. In [12] and [13], channel estimation
procedure in the D-RIS-aided system were proposed for SISO
and MISO systems, respectively. In [14], we have proposed
an alternating least squares (ALS)-based channel estimation
method by exploiting the Tucker2 tensor structure of the
received signals. We have shown that by carefully distributing
the N reflecting elements between two RISs in D-RIS systems,
more accurate channel estimation with less training overhead
can be achieved compared to S-RIS aided systems. To the best
of our knowledge, our previous work [14] is the only work on
channel estimation considering D-RIS-aided MIMO systems.

In this paper, and different from our previous work [14],
we assume that the training overhead assigned to each RIS
in D-RIS-aided MIMO systems can be adjusted separately.
Consequently, we show that the received signals in flat-fading
D-RIS aided MIMO systems can be represented as a 4-way
tensor that satisfies a nested PARAFAC decomposition model
[18], [21]. Exploiting such a structure, we propose a non-
iterative three-step channel estimation method, where one of
the three channel matrices in each step can be determined in
closed-form using a low-complexity least squares Khatri-Rao
Factorization (KRF) technique [19]. To enhance the channel
estimation accuracy, we further propose an ALS-based channel
estimation method where we estimate one channel matrix
assuming that the other two are fixed. ALS has more relaxed
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constraints on the training overhead than the closed-form KRF
method. Here, and different from our previous work [14], we
propose to initialize two channel matrices using the closed-
form KRF-based method. Using computer simulations, we
show that the newly proposed ALS method with KRF-based
initialization does not only have a faster convergence rate,
but also has a better estimation accuracy as compared to
the ALS-based method with random initializations proposed
in [14]. Moreover, we show that both proposed methods
have a comparable estimation accuracy if the identifiability
constraints of the closed-form KRF method are satisfied.
However, if less training overhead is used, then the ALS-
based method outperforms the closed-form KRF-based method
with less training overhead. Last but not least, both proposed
channel estimation methods can be extended to a multi-user
scenarios, where the channel estimation can be performed
separately for each user with orthogonal training sequences
in the time, frequency, and/or space domain without any
multi-user interference. In the case of non-orthogonal pilot
sequences, the block PARATUCK model can be used [15],
where the associated factor matrices are block matrices. The
number of matrix blocks is equal to the number of users. The
complexity of the receiver would be higher in this case, since
we estimate the channels of all users simultaneously.

Notation: The conjugate, the transpose, the conjugate trans-
pose (Hermitian), the Moore–Penrose inverse, the Kronecker
product, and the Khatri-Rao product are denoted as A∗, AT,
AH, A+, ⊗, and �, respectively. Moreover, diag{a} forms
a diagonal matrix A by putting the entries of the input
vector a in its main diagonal, vec{A} forms a vector by
staking the columns of A over each other, unvec{A} is the
inverse of the vec operator, and the n-mode product of a
tensor A ∈ CI1×I2×...,×IN with a matrix B ∈ CJ×In is
denoted as A×nB. Moreover, the following property is used:
vec{ABC} = (CT ⊗A)vec{B}.

II. SYSTEM MODEL

We consider a D-RIS aided MIMO communication system,
where a transmitter equipped with MTx antenna elements is
communicating with a receiver having MRx antennas via a D-
RIS aided channel1. As depicted in Fig. 1, RIS 1 is assumed
to be placed close to the transmitter and equipped with N1

reflecting elements while RIS 2 is assumed to be placed close
to the receiver and equipped with N2 reflecting elements.

Let HT ∈ CN1×MTx , HS ∈ CN2×N1 , and HR ∈ CMRx×N2

be the transmitter to RIS 1, RIS 1 to RIS 2, and RIS 2 to
receiver channels, respectively. We assume that we send L
symbols during the training phase. Moreover, L is divided
into three transmission blocks as L = I · J ·K. The received

1In this work, we consider deployment scenarios where the other propaga-
tion channels, i.e., the transmitter to receiver, the transmitter to RIS 2, and the
RIS 1 to receiver channels are neglectable (e.g, in a tunnel) due to severe signal
blockage and pathloss. Other scenarios where the aforementioned channels are
non negligible are left for future research.

Fig. 1. A D-RIS aided MIMO Communication System

signal at the (j, i, k)th transmission time, j ∈ {1, · · · , J}, i ∈
{1, · · · , I}, k ∈ {1, · · · ,K}, can be expressed as

ȳj,i,k = HRΨjHSΦiHTxk + n̄j,i,k ∈ CMRx , (1)

where xk ∈ CMTx is the kth training vector at the transmitter
with ‖xj‖ = 1, Ψj = diag{ψj} is the jth diagonal reflection
matrix of RIS 2 with ψj ∈ CN2 and |[ψj ][n2]| = 1/

√
N2,

Φi = diag{φi} is the ith diagonal reflection matrix of RIS 1,
with φi ∈ CN1 and |[φi][n1]| = 1/

√
N1, and n̄j,i,j ∈ CMR is

the additive white Gaussian noise vector with zero-mean and
variance σ2.

By stacking the received measurement signals {ȳj,i,j ,∀j}
next to each other as Ȳj,i = [ȳj,i,1, · · · , ȳj,i,K ], we obtain a
measurement matrix Ȳj,i which can be expressed as

Ȳj,i = HRΨjHSΦiHTX + N̄j,i ∈ CMRx×K , (2)

whereX = [x1, · · · ,xK ] ∈ CMTx×K and N̄j,i ∈ CMRx×K are
defined similarly to Ȳj,i. We assume that the training matrixX
is designed with orthonormal rows, i.e., XXH = IMTx , which
implies that K ≥ MTx. Then, the right filtered measurement
matrix Yj,i = Ȳj,iX

H can be written as

Yj,i = HRΨjHSΦiHT +Nj,i ∈ CMRx×MTx , (3)

where Nj,i = N̄j,iX
H. Given the measurement matrices in

(3), our main goal is to obtain an estimate for the channel
matrices HT,HS, and HR.

III. PROPOSED CHANNEL ESTIMATION METHOD

Let Ȳi be a 3-way tensor constructed by concatenating the
ith block measurement matrices Y1,i,Y2,i, . . . ,YJ,i along the
second dimension as

Ȳi = [Y1,i t2 Y2,i, . . . ,t2 YJ,i] ∈ CMRx×J×MTx , (4)

where ∪n denotes the concatenation along the nth dimension.
Moreover, let Y be a 4-way tensor constructed by concatenat-
ing the measurement tensors Ȳ1, Ȳ2, . . . , ȲI along the forth
dimension as

Y = [Ȳ1 t4 Ȳ2, . . . ,t4 ȲI ] ∈ CMRx×J×MTx×I . (5)

Here, we observe that the 4-way tensor Y can be inter-
preted as a nested PARAFAC decomposition [18], as shown
in Fig. 2. Specifically, let Ψ = [ψ1, · · · ,ψJ ]T ∈ CJ×N2 ,
Φ = [φ1, · · · ,φI ]T ∈ CI×N1 , and define the following two
3-way PARAFAC tensors A and B as

A = I3,N1 ×1H
T
T ×2 Φ×3HS ∈ CMTx×I×N2 , (6)

B = I3,N2
×1HR ×2 Ψ×3H

T
S ∈ CMRx×J×N1 .

1675



Fig. 2. Graphical representation of the 4-way tensor Y

Algorithm 1 Khatri-Rao Factorization (KRF)
1: Input: T ∈ CP×Q

2: for q = 1 to Q do
3: Get Tq = unvec{[T ][:,q]} = [R][:,q][L]T[:,q] ∈ CP2×P1

4: Compute SVD of Tq as Tq = uqσqv
H
q ∈ CP2×P1

5: Set [R̂][:,q] =
√
σquq and [L̂][:,q] =

√
σqv

∗
q

6: end for
7: Output: L̂ ∈ CP1×Q and R̂ ∈ CP2×Q

Then, it can be easily shown that the n-mode unfoldings of
the 4-way tensor Y , n = {1, 2, 3, 4}, can be expressed as

[Y ](1) = HR([A]T(3) �Ψ)T + [N ](1) ∈ CMRx×IMTxJ , (7)

[Y ](2) = Ψ([A]T(3) �HR)T + [N ](2) ∈ CJ×MRxMTxI , (8)

[Y ](3) = HT
T (Φ � [B]T(3))

T + [N ](3) ∈ CMTx×IMRxJ , (9)

[Y ](4) = Φ(HT
T � [B]T(3))

T + [N ](4) ∈ CI×MRxJMTx , (10)

where [A](3) = HS(Φ � HT
T )T ∈ CN2×IMTx and [B](3) =

HT
S (Ψ �HR)T ∈ CN1×JMRx are the 3-mode unfolding of A

and B, respectively. In the following, we propose two solutions
for estimatingHT,HS, andHR by exploiting the above tensor
structure.

KRF-based method: Assume that the training matrices Φ
and Ψ are designed with orthonormal columns, i.e., ΦHΦ =
II and ΨHΨ = IJ . Then, the left-filtered 2-mode and 4-mode
unfolding matrices are given as

[Ỹ ](2) = ΨH[Y ](2) = ([A]T(3) �HR)T + ΨH[N ](2) (11)

[Ỹ ](4) = ΦH[Y ](4) = (HT
T � [B]T(3))

T + ΦH[N ](4). (12)

Given [Ỹ ](2) and [Ỹ ](4) as above, the channel matrices HR
and HT can be estimated as a solution to

ĤR = argminHR
‖[Ỹ ]T(2) − ([A]T(3) �HR)‖2F, (13)

ĤT = argminHT
‖[Ỹ ]T(4) − (HT

T � [B]T(3))‖
2
F. (14)

Clearly, both problems have a similar structure given as

[L,R] = argminL,R‖T − (L �R)‖2F, (15)

assuming that T = (L � R) ∈ CP×Q, L ∈ CP1×Q, R ∈
CP2×Q, and P = P1P2. A closed-form solution to (15) can
be obtained using the least squares Khatri-Rao Factorization
(KRF) technique [19], as summarized in Algorithm 12.

On the other hand, to estimate HS, we exploit the observa-
tion that each n-mode unfolding [Y ](n) of the 4-way tensor

2Note that Tq ∈ CP2×P1 in Algorithm 1 is a rank-one matrix. Its singular
value decomposition (SVD) can be efficiently calculated using the Power
Iteration method, which has a low computational complexity.

Algorithm 2 KRF-based for CE in D-RIS Systems
1: Input: Measurement tensor Y ∈ CMRx×J×MTx×I

2: Get ĤR as a solution to (13) via Algorithm 1
3: Get ĤT as a solution to (14) via Algorithm 1
4: Given ĤR and ĤT, get ĤS using (18)
5: Output: ĤR, ĤT, and ĤS

Algorithm 3 ALS-based for CE in D-RIS Systems
1: Input: Measurement tensor Y ∈ CMRx×J×MTx×I

2: Initialize H
(0)
R as solution to (13) and H

(0)
T as solution to (14).

3: Select Lmax ≥ 1
4: for ` = 1 to Lmax do
5: Given H

(`−1)
R and H

(`−1)
T , get Ĥ(`)

S using (18)
6: Given H

(`−1)
T and H

(`)
S , get Ĥ(`)

R using (19)
7: Given H

(`)
R and H

(`)
S , get Ĥ(`)

T using (20)
8: end for
9: Output: ĤR, ĤT, and ĤS

Y can be seen as a 1-mode unfolding of a 3-way tensor. For
instance, the 3-mode unfolding [Y ](3) is equal to the 1-mode
unfolding of a 3-way tensor Z ∈ CMTx×JMRx×I given as

Z = I3,N1 ×1H
T
T ×2 [B]T(3) ×3 Φ + Q, (16)

where Q ∈ CMTx×JMRx×I is the 3-way noise tensor represen-
tation of the 4-way noise tensor N ∈ CMRx×J×MTx×I . Clearly,
[Z](1) = [Y ](3). The 2-mode unfolding of Z is given as

[Z](2) = [B]T(3)(Φ �H
T
T )T

= (Ψ �HR)HS(Φ �HT
T )T ∈ CJMRx×IMTx . (17)

Let z2 = vec{[Z](2)} = VShS, where hS = vec{HS} and
VS = (Φ �HT

T ) ⊗ (Ψ �HR) ∈ CIJMTxMRx×N1N2 . Then, an
estimate of HS can be obtained as

ĤS = unvec
{
{VS}+z2

}
. (18)

The proposed closed-form KRF-based channel estimation
for D-RIS systems is summarized in Algorithm 2.

ALS-based method: An ALS-based method can also be
used to estimate the channel matrices HR,HT, and HS.
Specifically, given [Y ](1) and [Y ](3), an estimate for HR and
HT can be obtained as

ĤR = [Y ](1)
{

([A]T(3) �Ψ)T}+ = [Y ](1){VR}+ (19)

ĤT
T = [Y ](3)

{
(Φ � [B]T(3))

T}+ = [Y ](3)
{
VT
}+
, (20)

where VR =
(
(Φ � HT

T )HT
S � Ψ

)T ∈ CN2×IJMTx and
VT =

(
Φ � (Ψ � HR)HS

)T ∈ CN1×IJMRx . Then, using
(18), (19), and (20), an ALS-based method can be used to
estimate HR,HT, and HS, respectively, as summarized in
Algorithm 3, which is guaranteed to converge monotonically
to, at least, a local optimum [20]. However, it is known that
the convergence rate of ALS-based methods depends on the
initialization, where a good initialization strategy generally
leads to a fast convergence rate, and therefore a reduced
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Fig. 3. NMSE versus SNR.

computational complexity. Motivated by the closed-form KRF-
based method, we propose to initialize HR and HT using (13)
and (14), respectively.

Identifiability, in the LS sense, can be obtained by noticing
that VR and VT must have full column-rank and VS must
have full row-rank. Therefore, Algorithm 3 requires that IJ ≥
max

{⌈
N2
MTx

⌉
,
⌈

N1
MRx

⌉
,
⌈

N1N2
MRxMTx

⌉}
, while its complexity3 is

on the order of O
(
Lmax ·(N3

2 +N3
1 +(N1N2)3)

)
. On the other

hand, Algorithm 2 requires that I ≥ N1 and J ≥ N2, while its
complexity is on the order of O

(
N2

1 +N2
2 +(N1N2)3

)
. In [14],

the ambiguities of the estimated channels were determined
under the same assumption for the system model and it
was shown that the estimated channels are unique up to
scalar ambiguities per column. In particular, these ambiguities
between the estimated and the true channels can be written as

ĤS ≈∆−1R HS∆
−1
T , ĤR ≈HR∆R, ĤT ≈∆THT, (21)

where ∆T and ∆R are diagonal matrices holding the scaling
ambiguities. Note that these scalar ambiguities have no impact
on the active and passive RIS reflection design of Φ and Ψ.
Let Ĥcascaded = ĤRΨĤSΦĤT ∈ CMRx×MTx be the cascaded
channel. Substituting the estimated channels given in (21) in
the cascaded channel Ĥcascaded, it can be seen that that the
diagonal ambiguity matrices ∆T and ∆R commute and they
cancel with their inverses. Therefore, the performance of the
system in terms of the spectral efficiency does not depend on
the knowledge of each channel HT, HS, and HR separately
but only on the cascaded channel.

IV. SIMULATION RESULTS

We assume that the entries of the channels HR,HT, and
HS are independent and identically distributed with zero-mean
circularly-symmetric complex Gaussian random variables. The
results are shown in terms of the normalized-mean-squared-
error (NMSE) of the effective channel defined as NMSE =
E{‖He − Ĥe‖2F}/E{‖He‖2F}, where He = HRHSHT and
Ĥe = ĤRĤSĤT. The signal-to-noise ratio is defined as

3Here, we have assumed that the complexity of calculating the Moore-
Penrose inverse of a m× n matrix is on the order of O(min{n,m}3).
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SNR = E{‖Y−N ‖2F}/E{‖N ‖2F}. Assuming that I ≤ N1 and
J ≤ N2, the training matrices Φ ∈ CI×N1 and Ψ ∈ CJ×N2

are designed by randomly selecting I and J rows from
normalized N1-DFT and N2-DFT matrices, respectively. In
all simulation results, we assume that MTx = 2, MRx = 4,
N1 = 30, N2 = 20, and K = MT.

In Fig. 3, we show the NMSE versus the SNR results
comparing the two proposed channel estimation methods, the
closed-form KRF-based method, i.e., Algorithm 2 and the
ALS-based method, i.e., Algorithm 3. From Fig. 3, we can see
that when I and J are selected such that I = N1 and J = N2,
both methods achieve the best performance. However, the
estimation accuracy of Algorithm 2 degrades significantly if
I < N1 and J < N2, since the identifiability constraints
for closed-form KRF are not satisfied. However, Algorithm
3 can still achieve a good performance only after Lmax = 10
iterations, at the expense of a higher complexity.

In Fig. 4, we show the NMSE versus the SNR results
comparing the proposed ALS-based method with KRF-based
initialization, i.e., Algorithm 3 and the ALS-based method
with random initialization proposed in [14]. As it can be seen,
Algorithm 3 not only enjoys a faster convergence rate as com-
pared to the ALS-based method with random initialization, but
also achieves a better channel estimation accuracy, especially
with a low training overhead. If we assume that the transmitter
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in this work represents a base station in a practical scenario,
then the required training overhead can be further reduced. The
reason is that due to the fixed position of the base station,
RIS 1, and RIS 2, HT and HS are slowly fading channel
matrices, which do not need to be estimated frequently. Since
the aforementioned observation is not exploited in this work,
the provided results can be seen as the worst-case, i.e., upper-
bound, of the channel estimation accuracy.

V. CONCLUSIONS

In this work, we propose a generalized channel estimation
technique for D-RIS aided MIMO systems where the training
overhead for each RIS can be selected separately. We have
shown that an accurate channel estimation can be obtained
with a small training overhead by capitalizing on the nested
PARAFAC model of the received training signal. Our results
show that we can achieve a good performance with ALS-
based channel estimation especially in scenarios with small
training overhead by using the closed-form KRF method as
an initialization strategy.
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