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Arthur Charléty1, Olivier J.J. Michel2, and Mathieu Le Breton3
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Abstract—The use of Radio-Frequency Identification (RFID) in
Earth Sciences has been growing in the recent years, notably for
landslide monitoring using phase-of-arrival localization schemes.
In this article, an Extended Kalman Filtering approach is
presented to exploit RFID phase data for landslide displacement
monitoring. The filtering is based on a stochastic Langevin equa-
tion for the state-space model, introducing a heuristic coupling
based on the mechanical continuity of the landslide material. This
helps correct measurement biases and deal with missing data
in the tracking of multiple tags. The Kalman state covariance
matrix is a useful indicator of the tags localization quality. It can
be exploited to discriminate true displacements from multipath-
induced artifacts. Phase unwrapping is performed implicitly
through the state model.

Index Terms—RFID, Kalman, Landslides, Sensor Fusion

I. INTRODUCTION

The use of RFID in Earth Sciences has been growing in
the recent years [1], with notable applications in landslide
monitoring [2]. RFID tags are low-cost and versatile de-
vices that can be easily deployed, and represent cheap and
dense solutions for displacement monitoring. This was already
demonstrated in both 1D and 2D long-term monitoring [3], [4],
with centimeter accuracy and weather robustness.

The counterpart of these advantages is the need to handle
phase noise and ambiguity [5]. The high amount of data and its
redundancy, both in space and time, implies a high number of
different sensors with inhomogeneous data sampling, variable
noise levels and the risk of measurement bias (caused by multi-
path interference for example [6]). For such datasets, fusion
approaches based on Kalman Filters or Extended Kalman Fil-
ters (EKF) have been widely investigated for the localization
of moving tags [7]. EKF enable to work with missing data and
variable measurement errors, which makes them particularly fit
for redundant and noisy datasets. Moreover, the continuity of
displacements can be implemented in the EKF physical model
to further increase the robustness of the filter, like with RTK-
GNSS localization [8]. Kalman-based sensor coupling is vastly
demonstrated for GNSS sensor fusion [9], [10]. Data fusion
from multiple sensors is the main motivation for applying EKF
to RFID tag localization [11] [12]. In [13], [14] an EKF is used
to fuse data from multiple antennas in order to perform indoor
localization. In a real-world scenario, [15] demonstrates RSSI
and phase data fusion to improve absolute ranging and relative
displacement estimation.

EKF are also widely used in Earth Sciences, notably in land-
slide monitoring scenarios.They often address data scarcity
through sensor fusion [16], [17], or to synthesise different
observables and models [18], [19].

In general, combining RFID tags considerably enhances the
precision of phase results, notably using an average operator
[20]. In this work, we aim to improve RFID data combination
with a Kalman-based approach. We address data scarcity and
varying accuracy by exploiting data redundancy and physical
heuristics in order to link multiple tags together. Namely, we
implement the continuity of position and velocity both in space
and time at the observation scale (about 1-10 m). The main
specificity of the proposed method lies in the coupling of
multiple tags at different positions, based on the concept of
landslide kinematic element [21]. The approach we propose
yields an improved and model-based phase unwrapping, as
well as data completion and fusion. Furthermore it provides
an estimate of the quality of the localization estimation, which
is of great importance from a user point-of-view. This work
is the first attempt at applying the EKF to improve long-term,
outdoor and slow-moving RFID monitoring.

II. EXPERIMENTAL SETUP

The Harmalière landslide (Sinard, France) is a slow moving
landslide located near Grenoble in the western Pre-Alps. It
is investigated by many research projects [22]. The RFID
setup, installed in 2020, consists of 4 reader antennas and
32 tags spread in a 30m by 30m investigated zone. Tacheom-
etry reference measurements are frequently performed. The
experimental setup (see Fig. 1) was described and validated
elsewhere [2]–[4], as well as signal processing methods for
data availability improvement [5], and showed centimeter-
accuracy in 2D over year-long monitoring.

III. MODEL AND KALMAN FILTER

Measurement setup A set of M antennas (4 in our setup)
at respective positions xm

a , m ∈ {1, . . . ,M} are spread at the
border of the landslide area (see Fig.1A). The antenna of index
m estimates a phase propagation delay for each single tag at
position x. This phase is:

Φm =
4πf

c
dm +Φoff ,
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FIG. 1 A : Aerial view of the landslide equipped with RFID monitoring. B : Example of phase series, unwrapped by the
Kalman filter or by a deterministic approach [5]. C : (Top) Displacement for two tags on the same support at different heights
(highlighted tag in A). The two tags were chosen among 32 to be those with the best quality of recorded data. Left: α = 0 (no
coupling between tag velocities). Right: α = 0.5 (equal contribution of mutual velocities). The black dots represent reference
measurement, with the corresponding error bar. (Bottom) Trace of the Kalman covariance state matrix for each tag.

where Φoff holds for the phase offset and dm = ∥x − xm
a ∥.

All phases are only observable modulo π (8 cm ambiguity)
due to RFID reader constraints. A first order approximation
with respect to the tag displacement gives:

δdm = uT
mδx+ o(∥δx∥), δΦm ≈ 4πf

c uT
mδx (1)

where um =
x−xm

a

∥x−xm
a ∥ is a unit norm vector. For this single

tag and M antennas, we get:

δΦ = [δΦ1, . . . , δΦM ]T =
4πf

c

uT
1
...

uT
M

 δx = Kδx , (2)

Where K ∈ Rd×M and d is the space dimension (3 in our
case). The classical MSE estimation of the tag position change,
given a set of M phase measurements leads to solve the normal
equation:

KKT δx = KδΦ .

Assuming that phase measurements errors are Gaussian
distributed, this solution matches with the maximum likelihood
estimate. It provides an unbiased estimate of δx and with a
variance equal to (KKT )−1.

This approach exhibits two problems: first it requires that
the antenna/tag geometry ensures that KKT has full rank (as
studied in [3]), and the variance depends on the conditioning
of this latter matrix. This builds the motivation for developing

an alternative approach relying on Kalman filtering. To that
end, a state equation is required, usually directly related to
the displacement physical model.

In early-warning and monitoring applications, empirical or
kinematic landslide models are often used [23], [24]. A simple
and approximate model is derived below.
Physical model Let Zt be a state vector in R2dN , constructed
from both positions Pt and velocities Vt of a set of N tags
at time t:

Zt =

(
Pt

Vt

)
= (x1

t
T
. . .xN

t

T
v1
t
T
. . .vN

t

T
)T .

We propose a model constructed from both the fundamental
principle of dynamics in physics and from an heuristics
stating that close enough tags will have coupled trajectories.
Consequently, we assume that all movements are due to
random forces or accelerations. Note that although gravity is
the major long-term driving force constraining downwards dis-
placements, local landslide block activity generates displace-
ments in all directions (for example, block rotation generates
upward movement). Thus velocities behave like Wiener-Levy
processes, and the system will follow the following Langevin
equation [25]:

d

(
Pt

Vt

)
=

(
0 C
0 0

)(
Pt

Vt

)
dt+

(
0Nd√
β1Nd

)(
0Nd

dwt

)
, (3)

where 0 and C are Nd × Nd matrices, 0Nd and 1Nd are
constant (resp. 0 ad 1) vectors of dimension Nd. wt is the
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Nd dimensional Wiener Levy process with unit covariance
matrix (assuming that all driving forces are independent and
have identical diffusion constants). C is the velocity coupling
matrix whose expression will be discussed later.

√
β entails

inertial mass and power of the driving force. It represents
the diffusion coefficient of the process. From Eq. (3) the
Fokker-Planck ordinary differential equation followed by the
covariance matrix of Zt is derived and after integrating on the
interval [0, t], we get [25], [26]:

Γz(t) = β

(
t3

3 CCT t2

2 C
t2

2 C
T tINd×Nb

)
. (4)

The above expression of Γz(t) is of major interest as it
accounts for both the decrease of the model reliability when
the time t between two consecutive observations increases, and
for the statistical dependence of position an velocity estimates.
This latter dependence is related to the fact that velocities are
not observed but derived from the position estimates.
Velocity coupling matrix: Arguing that tags near each other
should have similar velocities (because they belong to the
same kinematic elements [21]), the following structure for C
is proposed:

[C]ii = (1− α) [C]ij =
α
σ2
j
e−

dij
λ i, j ∈ {1, . . . , N} ,

(5)
where λ accounts for the characteristic distance above which
tags are considered to have possibly independent velocities,
and σ2

j will be the tag j estimated velocity error variance.
This allows to lower the influence of tags whose velocity is
badly estimated. Note that C is time dependent (dij and σj

vary with time). Forcing C to be the identity will lead to a
solution where each tag position and velocity may be tracked
independently from each other.
State equation: All previous results and equations lead to the
state equation (integral form of Eq. (3), between t and t′ > t):

Zt′ =

(
I Ct

0 I

)
Zt + γt′ = AZt + γt′ , (6)

where γt′ is a 2Nd-dimensional white noise with correlation
matrix Γz(t− t′) defined by Eq. (4). Note that the larger the
time elapsed between two observations (at t and t′), the larger
the covariance matrix of the state noise γt′ .
Observation equation: It is derived from Eq. (2), to which
some observation noise is added. The measurement covariance
matrix of the observation noise ξt′ , noted ΓΦ, depends upon
the instrument used to estimate δΦ (see [4], [5] for more
details). Finally, by assuming that δxt′ ≈ (t′ − t)Vt (this
is satisfied if the velocities vary slowly on the interval [t, t′]),
we get:

δΦt′ =
(
0 (t′ − t)Kt

)
Zt′ + ξt′ = HtZt′ + ξt′ . (7)

Although this equation is linear at each step, it is important
to notice that Ht varies with t.
Remarks: In practice, forcing row and column of index k of
ΓΦ to take very large values at some time instants where

measurements from antenna k are missing allows the Kalman
filter to rely only on the state equation at these time instants;
actually, it can be shown that the Kalman gain k-th component
will be thus forced to a near zero value. Nonetheless, the
velocity coupling term Ct will still force some local ensemble
movement. The problem of phase unwrapping disappears in
the Kalman formulation as the ’modulo π’ term is determined
by considering the forecast:

δΦ̂(t′|t) = HẐt′|t .

This quantity is estimated at t′ from the system observed until
time t only. Setting both state and noise covariance matrices
is critical, as it deals with the precision/robustness tradeoff.
Choosing β is therefore critical. On the contrary, setting C = I
in Γz has a lower importance in practice, and will be adopted
in order to simplify the Kalman filter implementation.
The terms σj and dij are replaced in Eq. (5) by the estimated
velocity error covariance for tag j and by |x̂i−x̂j | respectively,
estimated at time t. The derivation of the Kalman filter
equation is then classical and is not detailed is this short article.

We have derived an Extended Kalman Filtering approach
including sensor state coupling, and accounting for position-
velocity error correlation. Next section will comment on
simple real-data results.

IV. RESULTS AND DISCUSSION

Figure 1C presents displacement results from a pair of tags,
with their a posteriori (after Kalman filtering) error covariance
estimation ; results for two different values of α (different C
matrices) are compared. The grey bar represents a data gap
caused by hardware failure. Two main phases of activity stand
out : March 2021 and January 2022, with peak velocities of
2 cm / day.

As expected, the covariance estimation shows a strong
sensibility to missing data, with extremely high values that are
not shown here. Except from these (useful) values which can
be filtered out, the variation of the covariance trace informs
the user about the overall quality of the localization.

In the case where α = 0 (C = I) it can be considered as a
proxy for detecting interference phenomena or defective ma-
terial. The presented pair of tags should share approximately
the same displacement, as they are positioned on the same
object. Nonetheless we see a drift of the lower tag occurring
from May to October 2021, with a temporary displacement
difference of 20cm between the two tags. This drift, along
with the strong increase in state covariance, is most likely a
sign of radiofrequency interference [27]. This interpretation
is confirmed by the received signal strength indicator which
strongly decreases during the same period. As shown in [3]
for the same setup, this phenomenon mostly impacts tags
positioned closer to the ground. The state covariance estimate
is a tool for assessing the confidence of a result. In the
present case, the apparent displacement shown by the lowest
tag around June 2021 can be discarded, it is identified as an
artifact due to the important state covariance increase.
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In the case of α = 0.5 the drift between tags is diminished,
as the model imposes a partially-shared velocity. It can be
shown that the choice of α > 0 implies a decrease in the a
posteriori covariance, and this theoretical result is validated by
observation. However this higher precision is obtained at the
cost of a decreased robustness of the filter : it is less stable
with respect to a departure between model and reality. We
also note that the drift of the lower tag is propagated to the
upper tag, generating a displacement artifact on both tags for
the whole period of May to October 2021. Using a higher
number of tags as well as a different value for α should be a
way of solving this issue [28].

An example of model-based phase unwrapping is shown in
Fig. 1B. The velocity propagation implemented in the model
allowed for a correct unwrapping compared to deterministic
methods [5].

The coupling between tags relies on the concept of kine-
matic element, stating that landslide blocks stand out with
coherent displacements. In practice this assumption is often
verified in the current geomorphological environment [21].
Nonetheless, the distance-based correlation does not fully
correspond to the landslide block situation : close tags could
behave differently if they’re on a different block. Implementing
a correlation function based on tag clusters could improve the
results.

V. CONCLUSION

Extended Kalman Filters applied to long-term outdoor RFID
data allow to complete data gaps with multi-tag guidance
thanks to a position-velocity model, and to perform model-
based phase unwrapping. The Kalman state covariance matrix
is a usefull indicator of the localization quality. It can be
exploited to discriminate true displacements from multipath-
induced artifacts.
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