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Abstract— This paper proposes a vibration translation 

model (termed as VibFormer) for bridge live-load displacement 

estimation from acceleration signals. The live-load displacement 

caused by passing vehicles over the bridge structure is a 

substantial physical quantity to determine structural or traffic 

properties such as structural damage, vehicle weight, traffic 

counting, and structural monitoring applications. Theoretically, 

the double integration of acceleration produces displacement. 

However, it is challenging because the dynamic elements in the 

acceleration signal influence the static component of an 

integrated signal due to time-critical integration boundaries that 

result in the accumulation of non-zero initial limits. In addition, 

continuous vehicle passages distort the integration results even 

if strict boundary conditions are applied. To overcome these 

challenges, we propose to split the vibration signal's static and 

dynamic components into each frequency band and use a 

transformer model to estimate the bridge displacement given 

acceleration as the input signal. We performed a field 

experiment on a bridge structure to measure acceleration and 

displacement signals and evaluate the proposed method. The 

results show that the proposed method achieved a 91% 

correlation between the actual and estimated displacements. 

Keywords— Numerical integration, time-series transformer, 

live-load displacement, structural health monitoring. 

I. INTRODUCTION 

Bridge live-load displacements are critical indicators for 
bridge safety and design managers worldwide [1, 2]. Most 
bridges, specifically short- and medium-span bridges, are 
subject to the dynamic load caused by massive moving 
vehicles. These frequent occurrences of dynamic responses at 
relatively large amplitudes will cause fatigue damage [3] to 
the bridges, which can lead to the collapse of the whole 
structure. Thus live-load displacement monitoring becomes an 
essential aspect of the functionality and safety of bridges. In 
addition, traffic monitoring applications like vehicle weight-
in-motion systems [4] and traffic counting [5] use live-load 
displacements. 

Simultaneous measurements of the displacement response 
at multiple points are required to obtain the bridge live-load 
displacement. The measurement devices generally used are 
laser Doppler vibrometers [6] and linear variable differential 
transducers [7] that can measure the bridge displacement 
precisely with a fixed reference point for each installation at 
multiple bridge points. However, it is generally difficult to 
obtain a fixed reference point on an in-service bridge [8]. To 
overcome this problem, [9-11] proposed vision-based systems 
suitable for determining live-load displacements. However, 
vision-based systems also require height and camera angle 

calibration, which is often time-consuming and impractical in 
an in-service bridge. The alternative to the abovementioned 
methods, reference-free estimation using accelerometers [4, 
12-14] and strain gauges [15-17], has been proposed. In [17], 
a feed-forward neural network predicts displacement signals; 
however, it requires multiple strain gauge sensors. Due to 
installation difficulties in strain gauges, accelerometers are 
preferred, which can be easily mounted to magnetic plates or 
brackets and have great potential to measure the responses 
even in in-service civil infrastructures [18-20]. 

Theoretically, the double integration of acceleration 
produces displacement. However, the dynamic elements in the 
acceleration influence the static components in an integrated 
signal due to time-critical integration boundaries that result in 
the accumulation of noise and non-zero initial limit, overall 
reducing the accuracy of the integrated displacement [21]. 
Furthermore, using the additional sensors to extract the strict 
boundary conditions, the passage of continuous vehicles 
contaminates the signal that distorts the integration results. 
Numerous methods in literature [4, 12-16] determine the 
initial integration limits. The displacement determined from 
the measured acceleration showed higher similarity with 
actual displacement in [14], which proposed a free vibration 
method (FVM) that estimates the bridge displacement by 
using the time instances extracted from free vibrations of the 
bridge as integration boundaries. However, method 
performance highly depends on the efficiency of selecting 
time instances that require additional sensor installation. 

In this paper, we propose a vibration translation method 
termed VibFormer, a transformer-based [22] approach to 
estimate the bridge live-load displacement from a single 
accelerometer response. Theoretically, double integration of 
acceleration strongly correlates with actual displacement, 
which means an inherent relationship between their static and 
dynamic components [23]. For this reason, we propose to split 
the static and dynamic components of both the signals into 
each frequency band and train a transformer model by 
providing acceleration and displacement to the encoder and 
decoder network, respectively. The transformer model can 
efficiently capture long-range dependencies in the time-series 
sequences compared to the convolutional networks [19]. We 
performed a real-world bridge experiment on a national 
highway in Japan to measure acceleration and displacement 
signals and prepared single and continuous vehicle event 
datasets by reference to camera recordings. The evaluation of 
our proposed method on this experiment dataset proved the 
effectiveness of our approach, even in the continuous vehicle 
passages. 
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II. RELATED WORK 

A. Free vibration method (FVM) 

FVM determines the displacement of an in-service bridge 
from its acceleration based on its free and forced vibration 
regions [14]. At first, the initial and terminal limits for the 
integration are determined, assuming that before vehicle entry 
and after vehicle exit, the bridge is vibrating with sinusoidal 
oscillations about the zero-axis at its free vibration frequency. 
Second, the forced acceleration component of the bridge is 
numerically double integrated to obtain the forced 
displacement known as live-load on the bridge. Finally, the 
displacement curve is determined by summing the free 
vibration displacement and the forced displacement after 
subtracting the drift component from the integration result. 
The FVM requires multiple sensor installations to extract 
vehicle entry and exit time instances located at bridge edges, 
as FVM performance highly depends on integration 
boundaries. As shown in Fig. 1., the integration-based FVM 
result for a single vehicle is distorted from the actual 
displacement signal. The dynamic bias shift in the integrated 
signal occurs from the accumulation of non-zero boundaries 
and the inaccurate selection of time instances during the 
integration operation. Furthermore, the FVM performance on 
continuous vehicle passages degrades due to difficulty finding 
each vehicle's free vibration region. 

B. Transformer model 

The transformer model first proposed in [22] consists of 
an encoder-decoder structure. Both the encoder and decoder 
networks are composed of multiple identical blocks. Each 
encoder block consists of a multi-head self-attention module 
and a position-wise feed-forward network. The decoder block 
places cross-attention between the multi-head self-attention 
module and the position-wise feed-forward network. The 
three modules, absolute positional encoding, multi-head 
attention, and position-wise feed-forward network, are 
explained as follows. 

The first module, i.e., the absolute positional encoding 
layer, models the sequence information that describes the 
position of a value in that sequence, where each position is 
assigned a unique representation. For each position index 𝑡 in 
time-series, the encoding vector of size 𝑑𝑚𝑜𝑑𝑒𝑙  is given by 

 
𝑃𝐸(𝑡, 2𝑖) = sin(𝑡/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙) 

𝑃𝐸(𝑡, 2𝑖 + 1) = 𝑐𝑜s(𝑡/100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙) 
(1) 

where 𝑖 is the dimension for each input position index 𝑡. The 
second module, i.e., multi-head attention, works as an 

attention mechanism with Query-Key-Value (QKV) model. 
The scaled dot-product attention is given by 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝐷𝑘
) 𝑉  (2) 

where queries 𝑄 ∈  𝑅𝑁×𝐷𝑘 , keys 𝐾 ∈  𝑅𝑀×𝐷𝑘 , values 𝑉 ∈
 𝑅𝑀×𝐷𝑣  and 𝑁, 𝑀  denote the lengths of queries and keys, 
𝐷𝑘 , 𝐷𝑣  denote the dimension of keys and values, respectively. 
The 𝐻  different attention outputs are concatenated and 
linearly projected into the required dimension as 

 
𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑𝐴𝑡𝑡𝑛(𝑄, 𝐾, 𝑉) =

𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑𝐻)𝑊0  
(3) 

where ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉) . The third 

module, i.e., position-wise feed-forward network, is a fully 
connected layer expressed as 

 𝐹𝐹𝑁(𝐻′) = 𝑅𝑒𝐿𝑈(𝐻′𝑊1 +  𝑏1)𝑊2 + 𝑏2  (4) 

where 𝐻′  is output of previous layer of dimension 𝑑𝑚𝑜𝑑𝑒𝑙 , 

𝑊1 ∈  𝑅𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑓𝑓 , 𝑊2 ∈  𝑅𝑑𝑓𝑓×𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑏1 ∈  𝑅𝑑𝑓𝑓 , 𝑏2 ∈
 𝑅𝑑𝑚𝑜𝑑𝑒𝑙  are trainable parameters. In addition, the Layer 
Normalization module is placed after each module, i.e., 

 
𝐻′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛(𝑋) + 𝑋)  

𝐻 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐹𝐹𝑁(𝐻′) + 𝐻′)  

(5) 

(6) 

where 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑛(. )  denotes self-attention module and 
𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(. ) denotes the layer normalization operation. 

The time-series modeling for classification [24, 25], 
anomaly detection [26, 27], and forecasting [28-31] tasks 
apply the transformer approaches. Time-series forecasting is 
an essential application of time-series analysis and motivation 
of our vibration translation method. Reference [28] proposed 
LogSparse transformer by using causal convolutions to 
generate queries and keys in the self-attention layer that 
reduced computational complexity. Another simple seasonal 
trend decomposition architecture with an auto-correlation 
mechanism was proposed in [30] as an attention module, 
which measures the time-delay similarity between inputs and 
aggregates the top-k similar sub-series to produce the output 
with reduced complexity. On the contrary, FEDformer model 
in [31] proposed to apply attention operation in the frequency 
domain with Fourier and wavelet transform. It achieved a 
linear complexity by randomly selecting a fixed-size subset of 
frequency. These transformer models have shown superior 
results in time-series forecasting applications. Another aspect 
of signal modeling is signal translation application [32-34], 
where an input signal translates to another signal or text. 
Reference [34] proposed WaveTransformer focusing on 
learning long-term temporal and time-frequency information 
from audio and expressing it into text using the transformer 
model. These transformer models can learn long-term 
sequence complexity better than RNN and CNN models, as 
reported in [22]. So, the proposed method includes a 
transformer model to translate one form of vibration to another 
form by a single time series, explained in the next section. 

III. PROPOSED METHOD 

A combination of signal processing and deep learning 
techniques is proposed here as a vibration translation method. 
The proposed method consists of two main parts, i.e., 
vibration feature extraction and translation. The vibration 
feature extraction splits two vibration signals into each 
frequency band, its static and dynamic components. The 
vibration translation trains a transformer model with features 
that can translate one form of vibration into another. Fig. 2. 
illustrates a combined block diagram of training and 

 
Fig. 1. An example of actual ground truth displacement (dashed line) and 

displacement obtained from acceleration signal by FVM (solid line). 

1694



 

 

estimation phase data flow, including two parts of the 
proposed method. For simplicity, acceleration to displacement 
translation is used here for the explanation. 

A. Vibration feature extraction 

In vibration engineering, three types of vibration, 
displacement, velocity, and acceleration, are related by 
differential and integral operation, and their frequencies relate 
to sine or cosine functions that satisfy the differential 
equations for simple motions of a bridge structure as 
expressed in (7) to (9). 

 𝑥 = 𝐴 cos(𝜔𝑡 + 𝜑)  (7) 

where, 𝑥=displacement, 𝐴=amplitude, 𝜔=frequency, 𝑡=time 
and 𝜑=phase. The time derivative of displacement is velocity, 

 𝑣 =
𝑑𝑥

𝑑𝑡
= −𝜔𝐴 sin(𝜔𝑡 + 𝜑)  (8) 

where 𝑣=velocity. The double derivative of displacement is 
acceleration, 

 𝑎 =
𝑑2𝑥

𝑑𝑡2 = −𝜔2𝐴 cos(𝜔𝑡 + 𝜑)  (9) 

where 𝑎 =acceleration. From (9), the double integration of 
acceleration will produce back to displacement, which means 
a strong correlation between integrated acceleration and the 
actual displacement. Thus, a strong correlation between static 
and dynamic frequency components. The feature extraction 
part assumes that a vibration signal 𝑦(𝑡) can be expressed as 
Fourier expansion, as stated in (10), that consists of frequency 
and phase information from zero to Nyquist frequency 
obtained by the FFT method, 

 𝑦(𝑡) = 𝐴𝑖+ ∑ 𝐴𝑛sin (2𝜋𝑓𝑛𝑡 + 𝜑𝑛)
𝑓𝑠/2
𝑛=0   (10) 

where, 𝐴𝑖 =initial amplitude, 𝑓𝑠 =sampling frequency, 
𝑓𝑛=signal frequency, 𝑡=time and φ𝑛=phase and 𝑛=frequency 

number up to Nyquist frequency. Equation (11) shows the 
split version of (10) representing each frequency component, 

 
𝑦(𝑡) = 𝐴0sin (2𝜋𝑓0𝑡 + 𝜑0) +  

𝐴1sin (2𝜋𝑓1𝑡 + 𝜑1)+ … +𝐴𝑛sin (2𝜋𝑓𝑛𝑡 + 𝜑𝑛)  
(11) 

where, 𝑛 =number of frequencies. Our proposed method 
inverses each FFT component independently to obtain its 
corresponding time series and concatenates to form an 𝑛 -
dimensional matrix representing static and dynamic vibrations. 
After the model estimations, these vibration features can be 
reconstructed to their original 1-dimensional time series by a 
simple sum operation. 

B. Vibration translation 

We present vibration translation as a supervised machine 

learning task, given a first vibration signal 𝑋 as input and the 

second vibration signal as output 𝑌. Each data point in 𝑋 and 

𝑌are a vector containing vibration features. The vibration 

translation part follows the original Transformer architecture 

[22] that consists of encoder and decoder blocks, as shown in 

Fig. 3. The encoder block is composed of a linear input layer, 

a positional encoding layer, and a stack of six identical 

encoder layers. The input layer maps the input time series 𝑛-

dimensional features to a 𝑑𝑚𝑜𝑑𝑒𝑙  dimension vector through a 

fully connected network. The Positional encoding uses sine 

and cosine functions to encode sequential information and 

applies element-wise addition of the input vector with a 

positional encoding vector and feed to six encoder layers. 

Each encoder layer consists of a self-attention sub-layer and 

a fully connected feed-forward sub-layer, followed by a 

normalization layer after each sub-layer. The encoder block 

generates a 𝑑𝑚𝑜𝑑𝑒𝑙-dimensional vector to input to the decoder 

block. The decoder block comprises a linear input layer, a 

positional encoding layer, six identical decoder layers, and an 

output layer. The input layer maps the decoder input to a  

Fig. 2. Block diagram of the proposed VibFormer method with the data flow during training and estimation phase. 
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𝑑𝑚𝑜𝑑𝑒𝑙-dimensional vector followed by positional encoding 

layer. The decoder layers have two sub-layers like encoder 

layers and insert a third sub-layer to apply self-attention 

mechanisms over the encoder output. Finally, there is an 

output layer that maps the output of the last decoder layer to 

the target 𝑛-dimensional time-series features. A look-ahead 

mask approach is used here with a one-position shift between 

the decoder input and output. For this reason, a constant value 

is inserted at the initial time instant of each decoder input 

vector to ensure the time-series translation follows the same 

time sequence as the encoder input. 

IV. EVALUATIONS 

A. Dataset processing and model training 

A bridge experiment was carried out on a national 
highway in Japan to measure acceleration and displacement. 
We selected the event dataset by counting the number of peak 
displacements greater than 2mm, 20% of the max peak. We 
sliced 500 single and 275 continuous vehicle events into 10- 
and 20-second sequences, where single events consist of a 
single peak and continuous events more than one peak. This 
evaluation shows a comparison between the FVM method and 
the VibFormer. We selected the integration boundaries in 
FVM by obtaining the time instant of zero-point in 
displacement and then mapped it to the acceleration. Secondly, 
for VibFormer training, we concatenated single events and 
used a fixed-length sliding time window of 250ms to construct 
16k samples of 𝑋, 𝑌  pairs. Before applying the sliding 
window, we perform max normalization on all the data with 
maximum value of training dataset and apply standardization 
after obtaining 𝑛-dimensional vibration features, 𝑁=20 in this 
evaluation. The training and evaluation dataset ratio was 7:3. 

The VibFormer model is trained to estimate the 
corresponding sequence from its input sequence, where each 
sequence had 20Hz sampling frequency and 8 seconds long. 
As shown in Fig. 3., given the encoder input 𝑥0

𝑛, 𝑥1
𝑛 , … , 𝑥𝑘

𝑛, 
and the decoder input 𝑐𝑛𝑦0

𝑛 , 𝑦1
𝑛 , … , 𝑦𝑘

𝑛 , the decoder aims to 
output 𝑦0

𝑛 , 𝑦1
𝑛 , … , 𝑦𝑘

𝑛, where 𝑘=160, time samples, and, 𝑐=1, a 
constant used in this evaluation. We used the Adam optimizer 
with 𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 10−9  and a custom learning 
rate as in [22] with a minibatch of size 32. Each sub-layer of 

encoder-decoder blocks used a dropout rate of 0.2. Since the 
signal translation task is similar to a regression problem, the 
root mean square error is used as the loss function in the model 
training. Finally, a greedy decoding method generates the 
target displacement signals in the model estimation phase. 

B. Results 

Two metrics, including cross-correlation coefficient and 
mean-absolute errors (MAE), are computed to measure the 
performance between the actual and estimated displacement. 
The cross-correlation coefficient shows the similarity between 
the time series, indicating better performance with a larger 
value. This evaluation analyzes the efficiency of estimating 
the long-term complex structure in time series by cross-
correlation coefficient, which can represent the overall 
similarity between actual and estimated displacement. The 
second metric, MAE shows the error between paired 
observations. A lower value indicates better performance. On 
applying acceleration to displacement translation, we focused 
on the efficiency of estimated bridge displacement values, 
especially the maximum deflection point. For each sequence, 
the maximum displacement is selected, and MAE is calculated. 

The VibFormer model performance, i.e., the median of the 
cross-correlation coefficient and MAE on the training dataset, 
is 98% and 7%, respectively. Table I summarizes the median 
of both metrics for existing FVM and the proposed VibFormer 
method, calculated from the evaluation dataset not shown in 
the training phase. The comparison suggests that the 
VibFormer method outperformed FVM for correlation and 
MAE metrics. The cross-correlation coefficient of the 
VibFormer method for single events is slightly higher than 
FVM, although, in the continuous event category, it is a drastic 
improvement. For MAE, the VibFormer shows lower errors 
in both event categories. These results suggest that VibFormer 
can capture complex temporal patterns even in continuous 
vehicle events. Furthermore, Fig. 4. illustrates a continuous 
vehicle event from the evaluation dataset, which shows a good 
similarity and accurate peak displacements. 

 
Fig. 3. Architecture of Transformer-based vibration translation model. 
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(solid line) and estimated from VibFormer method (dashed line). 
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V. CONCLUSION 

A vibration translation method, VibFormer, for bridge 
live-load displacement estimation from acceleration has been 
proposed. Vibration feature extraction by splitting static and 
dynamic frequency components simplified the complex long-
term structure in time-series sequences, improving the overall 
translation efficiency. It has been shown that the proposed 
method outperformed the existing method in an experimental 
dataset of a real bridge. We further plan to increase the range 
of the training dataset to include more vibration signals of 
multiple bridge structures. 
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