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Abstract—Feature extraction is an important process in hu-
man activity recognition (HAR) with wearable sensors. Recent
studies have shown that learned features are more effective
than manually engineered features in related fields. However,
the scarcity and expensiveness of labeled data are limiting the
development of sensor data representation learning. Our work
focuses on this issue and introduces a self-supervised learning
method that uses unlabeled data to improve the quality of learned
sensor representations. We hypothesize that unlabeled wearable
sensor data in human activities have long-term and short-term
temporal contextual correlations and exploit such correlations
with Transformer and Contrastive Predictive Coding (CPC)
framework. The learned representation is evaluated on human
activity recognition and detection tasks in real-life scenarios. The
experiments show that our method outperforms previous state-
of-the-art methods on MotionSense and MobiAct datasets on the
HAR task and gets a remarkable performance on the EVARS
dataset on the action detection task.

Index Terms—IMU sensor, self-supervised learning, repre-
sentation learning, human activity recognition, temporal action
localization

I. INTRODUCTION

With the development of ubiquitous and mobile computing
technologies, human-centric wearable equipment with inertial
measurement units (IMU) has become popular. The growing
prevalence of wearable devices makes large amounts of sen-
sor data accessible and promotes the blossoming of human
activity-related applications, including but not limited to action
recognition, posture prediction, and health assessment. Gen-
erally, the workflow of these applications can be conducted
in five steps—data collection, pre-processing, segmentation
(data split), feature extraction (i.e., representation learning),
and classification (or regression), which is called activity
recognition chains (ARC) [8]. While the omnipresent IMU
sensors grant the availability of unlabeled data, the collection
of annotated sensor data remains to be a challenge due to
privacy and costliness. Driven by this significant insufficiency
of labeling data, self-supervised learning that utilizes unlabeled
sensor data have been proposed to improve the performance
of related applications.

Self-supervised learning aims to extract high-quality vector-
ized representations from raw IMU sensor data with abundant
unlabeled data to alleviate the impact caused by the lack of
annotations. These methods consist of two parts. The archi-
tecture used for the representation encoder and the training
strategy to pre-train the encoder. Previous studies have shown
that deep learning methods, including Convolutional Neural
Networks (CNNs) [9] and Recurrent Neural Networks (RNNs)
[3], can effectively learn representations of IMU sensor data.
Then, Transformer [10], which has excelled in representation
learning of data for other modalities, was also introduced
for encoding sensor learning. The validity of these encoders
indicates that there is intrinsic information in the unlabeled
sensor data that can be explored.

For the training strategy, one major method is masked recon-
struction. It involves masking a portion of the input data and
training the model to reconstruct the missing portion. The main
idea of masked reconstruction is that there is a bidirectional
correlation in sequential signals that can be learned by the
model. Another widely used method is contrastive learning
which trains the model to differentiate between similar and
dissimilar samples. This method assumes that there is a
commonality in some given similar or continuous inputs, and
learns this commonality by making the model discriminate
among randomly acquired false samples.

In this paper, we introduce a Transformer-based contrastive
learning framework with sensor data specialized front-process
module. This is the first work to combine contrastive learning
with Transformer for sensor data representation learning. This
combination of the methods allows the inherent nature of
sensor data to be fully utilized by self-supervised pre-training,
hence generating informative representations that can be easily
adapted to different downstream tasks. Firstly, unlabeled sen-
sor data is used for pre-training. Self-supervised learning is
applied here to enable the encoder to learn the latent structure
and temporal relationship inside sensor data. After the pre-
trained is finished, the encoder is transferred to a downstream
task with limited supervised training.

The quality of the representation learning framework is
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Fig. 1: “Pretrain-then-Finetune” Workflow: The encoder (i.e.
representation extractor) is pre-trained with unlabeled data, and then
fine-tuned on a downstream task with limited labeled data

evaluated based on the performance of downstream tasks,
human activity recognition and temporal action localization.
Experiment results show that our model has a deep understand-
ing of sensor data after pre-training on unlabeled data in the
proposed framework, outperforming state-of-the-art supervised
and self-supervised methods. For the evaluation of temporal
action localization (TAL), which is the first attempt to do
action detection related tasks using sensor data, we also get
competitive results. Through this task, we demonstrate that the
representations learned by our model are versatile and have the
potential to be applied to different tasks in various scenarios.

II. PREVIOUS STUDIES

Massive research has been conducted for sensor data repre-
sentation learning. Saeed, et al. [9] introduced the “pretrain-
then-finetune” workflow into self-supervised sensor represen-
tation learning. They used convolutional neural networks as the
feature encoder for local information extraction. The encoder
is pre-trained with raw unlabeled sensor data on several signal
transformation prediction tasks such as noised, scaled, rotated,
etc. Then, the model is fine-tuned to human action recognition
to evaluate the performance of the pre-trained encoder. The
paper shows the potential of such workflow in sensor data
representation learning, but the general signal transformation
prediction task can not capture the character of sensor data in
depth.

Haresamudram et al. [4] choose to reconstruct masked input
sensor data as their pre-training task for better sensor rep-
resentations, which also follows the ”pretrain-then-finetune”
workflow as in [9]. However, the masked reconstruction task
may be to difficult for sensor data since it do not contain strong
bidirectional relationship.

Fig. 2: Overview of the Framework

Temporal information of sensor data is utilized through
contrastive learning in [3], proving the importance of contex-
tual relationships inside sensor data. The paper uses recurrent
neural networks as encoder to encode the input embeddings
into informative representations. The model is pre-trained
by predicting future embeddings of data with information
provided by the current representation. After pre-training, the
encoder is frozen and applied to a human activity recognition
task for evaluation. The CPC framework has been proven to be
effective in several sequential signal learning tasks [6] and it
also shows competitive performance on sensor representation
learning. The problem of this paper is also the lack of attention
to the inherent characteristic of sensor data and it just follows
a successful framework.

III. CONTRASTIVE LEARNING OF TRANSFORMER

A. Overview

In this section, we describe the design of the proposed
framework and how it is applied to human activity related
applications.

The framework follows the workflow shown in Fig. 1.
Firstly, unlabeled sensor data is used for pre-training. Self-
supervised learning is applied at this stage to enable the
encoder to learn the latent structure and temporal relationship
inside sensor data. At the second stage, the pre-trained encoder
is transferred to a downstream task with limited supervised
training. The quality of the representation learning framework
is evaluated based on its performance on downstream tasks.

Our proposed framework consists of a front-process module
and a Transformer encoder as shown in Fig. 2. From the
bottom to the top, the first part is a front-process module that
shares weight across different timesteps but only processes
one timestep at a time. The module focuses on processing
the multi-channel sensor data X into fused intermediate rep-
resentations Z . The second part is a Transformer encoder that
learns the bidirectional temporal correlation inside the clip-
level sensor data and outputs the final representation C.

B. Front-Processing Module

In our system, the front-processing module is designed to
solve the fusion problem of different types of IMU sensor
data. Typically, three different types of data are included in
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Fig. 3: Front-Processing Module: W refers to window size,
i.e., the number of frames in each chip, D refers to the feature
dimension, which is a predefined hyperparameter, C = 3 is
the dimension of each data type

IMU sensor data, which is acceleration, angular velocity, and
software-based orientation information. If we fuse different
types of data at the beginning stage, data from other types
could be some kind of noise for the model to obtain the whole
understanding of each type.

To process the raw sensor data into intermediate features
that are suitable for deep neural networks, we design a sensor
data specialized front-processing module shown in Fig. 3. It
firstly transfers the data from different types to a standard
latent sub-representation separately, which preserves the inner
relationship inside each data type. Then the three orthogonal
sensor features are get fused together with shared CNNs, for
obtaining the comprehensive sensor features.

C. Transformer Encoder

We use a Transformer-based encoder [10] as the feature
encoder shown in Fig. 2. By applying the Transformer-based
encoder, we aim to explore the long-term temporal relationship
inside input sequences. Such a relationship is an inherent
characteristic of wearable IMU sensor data because human
activities are persistent and consistent. Unlike other sequential
signals such as speech signals in which one utterance can be
less than 1 second, human activities always last from tens of
seconds to hours (i.e. jogging or walking). And the consistency
is cross-activities. For example, if we are running, what we are
going to do next is either continue running or slow down, both
will show a clear numerical consistency. The Transformer-
based encoder can capture such contextual correlation without
any extra information. That is also the foundation of our self-
supervised learning framework.

Combining the front-process module and Transformer-based
encoder, Our encoder can focus on the channel-wise nature of
sensor data while also paying attention to the persistence of
human activity associated with IMU sensors.

D. Pre-Training with Contrastive Learning

We use a contrastive learning based self-supervised learning
method to match the continuity of IMU sensor data. As
continuous chips share a significant similarity, contrastive
learning methods can learn the relationship between them
easily. Our learning method follows the idea of contrastive
predictive coding (CPC) [6]. The CPC framework allows a
further prediction compared to other methods, making the
long-term human activities’ information to be obtained. The
process of applying CPC to our model is shown in Fig. 2.
Firstly, the front-processing module map a clip of sensor data
xi into a sequence of intermediate representations zi. Then,
the Transformer encoder is utilized to process the intermediate
representations zi into output representation ci. Finally, we use
the output representation ci to predict future timesteps zi+k.
As introduced above, CPC does not use a generative model
pk(xi+k|ci), but the density ratio is applied here as follows
[6]:

fk(xi+k, ci) ∝
p(xi+k|ci)
p(xi+k)

, (1)

here ∝ stands for ’proportional to’. And a simple log-
bilinear model is used for scoring:

fk(xi+k, ci) = exp(zTi+kWkci). (2)

Here, a linear transformation WT
k ci is used for the pre-

diction with a different Wk for every timestep k. Using the
density ratio fk(xi+k, ci) and inferring zt+k with an encoder
relieves the model from modeling the high-dimensional dis-
tribution xtk . We can not get p(x) or p(x|c) directly, but
samples from these distributions can be used directly for some
techniques such as Noise-Contrastive-Estimation. Here, we
use the InforNEC loss detailed in [6] to update the network
parameters:

LN = −EX

[
log

fk(xi+k, ci)

Σxj∈X fk(xj , ci)

]
, (3)

where a positive sample that is from future timesteps
p(xi+k|ci) and N − 1 negative samples from proposal dis-
tribution p(xi+k) is used for optimizing the objective. The
InforNEC loss is a categorical cross-entropy of classifying the
positive sample from negative samples, with fk

ΣX fk
being the

prediction of the model.

IV. EXPERIMENTS

A. Setup

In this section, we introduce the setup for our pre-training
and how we use two downstream tasks, human activity
recognition (HAR) and temporal action localization (TAL),
to evaluate the quality of our learned representation. HAR
refers to identifying actions performed by a person based on
data collected from the surroundings. Such action involves the
main part of common events performed in our daily life, such
as walking, jogging, or jumping. TAL is an action detection
task, which aims to detect activities in a temporal data stream
and output the beginning and ending timestamps. Specifically,
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TABLE I: Experiment Results for HAR: The evaluation met-
rics is mean F1-score, which is the mean of F1-score for each
activity class. The results of the best-performing method on
both datasets are bold. * indicates this method is a supervised
learning method.

Approach MobiAct MotionSense
DeepConvLSTM* [7] 82.40 85.15
Multi-task self-supervised [9] 75.41 83.30
Convolutional autoencoder [2] 79.58 82.50
Masked reconstruction [4] 76.81 88.02
Contrastive Learning with RNN [3] 80.97 89.05
Proposed (w/o front-processing) 81.58 88.98
Proposed 83.84 89.23

we consider the data stream contains action instances and
background data (indicating there is no action we care), and
the aim of TAL is to find these action instances from the
background data.

The pre-training is performed for 100 epochs with the
learning rate range from {1e-3, 5e-4} and k ∈ {2,4,8,12,16}.
For the Transformer encoder, the embedded dimension D is
128, and the number of layers is 8. The network weights
are optimized using Adam. The prediction networks, Wk,
are linear layers with 128 units. For the experiment on each
dataset, the pre-training data is the training set of the same
dataset without annotations.

B. Results for Human Activity Recognition

Fine-tuning for human activity recognition is a simple multi-
class classification task, which is optimized by cross-entropy
loss shown below:

LCE = −
M∑
c=1

yo,c log(po,c), (4)

where M is the number of classes, y is the binary indicator
(0 or 1) if class label c is the correct classification for
observation o. p is the predicted probability observation o is
of class c.

We perform HAR on two datasets, MobiAct [11] and
MotionSense [5]. The evaluation metric is the mean F1-score
defined as:

Fm =
2

|c|
Σc

precc × recallc
precc + recallc

, (5)

where |c| indicates number of activity classes in the dataset
and precc and recallc are the precision and recall for class c.
We compare the evaluation result with state-of-the-art methods
for different supervision types as shown in Tab. I. It shows that
our proposed model is not only the best in self-supervised
learning methods but also in supervised methods.

The confusion matrix is shown in Fig. 4 and Fig. 5.
We also conduct experiments about the ability of the Trans-

former to deal with long sequences as shown in Tab. II.

Fig. 4: Confusion Matrix for MobiAct: The class name stands
for standing, walking, jogging, jumping, stairs up, stairs down,
stand to sit, sitting on a chair, sit to stand, car step-in, and car
step-out

Fig. 5: Confusion Matrix for MotionSense: The class name
stands for down stairs, up stairs, walking, jogging, standing,
and sitting

C. Results for Temporal Action Localization

Following the workflow of [12], we use structured segment
networks to perform the TAL task, while we replace the
feature encoder with our model. We apply 0-1 detection that
only outputs the interval of an action instance. The evaluation
metric is average precision (AP) calculated based on the
confusion matrix and Intersection over Union (IoU) shown
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TABLE II: Experiment Results for Encoder Architecture: We
use different input sequence sizes and encoder structures to
evaluate the performance of the Transformer encoder

Encoder Input Sequence Size
200 400

RNN 80.17 81.38
Transformer 81.09 83.84

TABLE III: Experiment Results for TAL: The evaluation
metrics is the mean average precision from IoU thresholds
from 0.2 to 0.5.

IoU Thresholds
Model 0.2 0.3 0.4 0.5 Average
RNN with CPC 56.04 49.76 42.86 36.68 46.34
Proposed 66.22 58.66 46.98 39.10 52.74

as follows:

AP =

n−1∑
i=0

(Ri −Ri+1)Pi, (6)

Rn = 0, Pn = 1, (7)

where n is the numbers of pre-set IoU thresholds, Ri and
Pi is the recall and precision at threshold i.

We perform the TAL task on EVARS dataset [1]. The result
is shown in Tab. III. We can see that the learned representation
from sensor data has the ability to distinguish actions from
inactive background data. And compared with the current
state-of-the-art model [3] in human activity recognition, our
proposed model still performs better, which demonstrates the
generality and effectiveness of the representations learned by
our framework.

D. Discussion

Fig. 4 and Fig. 5 show that the same problem exists on both
datasets that similar activities are hard to be distinguished. For
example, activities like ’sit to stand’ and ’car step-out’, are so
close that ’car step-out’ can be considered as one kind of ’sit
to stand’, and the only difference is the subtle movement in
the horizontal level, which is difficult to be detected by an
IMU sensor in the pocket. If we can add one sensor in the
wrist, such kind of movements can be captured. Other than
these cases, the model can effectively recognize these daily
activities with very limited supervised training.

Although temporal action localization is a relatively dif-
ficult task, we obtained quite good results without action
classification. This suggests that our proposed framework
is generalizable and can be used in a variety of different
scenarios.

V. CONCLUSIONS

In this paper, We proposed a Transformer-based self-
supervised learning framework for sensor data representation
learning. It firstly applies contrastive learning to the Trans-
former to extract informative representation from unlabeled
data. The framework design focuses on the inherent charac-
teristic of sensor data, which can be concluded as consistency
and temporal contextual correlation.

We evaluate our representation learning framework on hu-
man activity recognition and temporal action localization. With
our experiment results, we demonstrate the effectiveness and
generality of our method. The pre-trained model can capture
the latent information in temporal IMU sensor data and has
the ability to be applied to the different downstream tasks.

However, sensor data has limitations from the physical level.
Compared with other information-rich data like video, the
knowledge contained in wearable sensor data is restricted to
the body parts where the sensor is located. To compensate for
this gap, we can use several IMU sensors located in different
body parts to obtain a wealth of information. This brings
the relationship of multiple sensors into consideration, which
we believe will also profoundly reflect the characteristics of
human activity.
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