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Abstract—In most practical application scenarios, several fac-
tors may introduce domain discrepancy between the train (source
domain) and test (target domain) data. Domain adaptation tech-
niques address this domain shift to ensure reliable inferencing.
However, limited data and the unavailability of annotations of
the target domain data pose an additional challenge for the
adaptation task. Unlike divergence and adversarial learning-
based techniques that are data-hungry, subspace modeling-
based techniques are found more suitable for learning rep-
resentations from limited data. This work presents a novel
subspace interpolation-based method via transform learning for
unsupervised domain adaptation. Transform learning framework
has been used for subspace modeling that provides superior
performance in terms of accuracy, computational complexity,
and improved convergence over dictionaries. They model the
subspace that links the source and target domain data and
generates domain invariant features for cross-domain analysis.
The potential of the proposed method is demonstrated using the
challenging scenario of adaptation between different but related
machines using two public datasets. Experimental results show
the effectiveness of the proposed method compared to the state-
of-the-art methods for machine diagnosis.

Index Terms—Subspace modeling, Transform learning, Do-
main adaptation, Unsupervised learning, Machine fault diagnosis

I. INTRODUCTION

With the rapid development of industrial data and IoT,
prognostics and health management of industrial machines are
becoming increasingly popular. It is an essential component
in industry 4.0 as it helps to maximize throughput by outage
prevention. Recently various intelligent fault diagnosis systems
have come up that depend on deep representation learning
techniques to ensure the reliable operation of machines. How-
ever, for these techniques to be effective, they need huge
amount of labeled data for training. Additionally, they assume
train and test data to follow similar distribution. These condi-
tions cannot be assured in most practical application scenarios
of machine inspection. Labeled data is usually scarce and
challenging to collect (manual labeling is costly); moreover,
faults are rare events. Domain discrepancy between the train
(source domain) and test (target domain) data may arise due
to various factors like change in the operating conditions that
are affected by a change in speed, torque, sensor placement,
bearing/gearbox specifications, working environment, etc. This

domain discrepancy needs to be suitably addressed to ensure
the reliable performance of the models.

Of late various deep learning-based techniques have been
explored for adaptation that addresses the domain shift be-
tween the source and target domain for machine diagnosis.
They provide domain invariant features for learning more
general diagnosis by utilizing labeled samples from multiple
domains. Due to the scarcity of labeled samples in such
application scenarios, the focus has been on Unsupervised
Domain Adaptation (UDA) techniques. Our current application
focus is on bearing health monitoring since bearings are
critical element for all rotating equipment in machines. They
are often used under extreme loads making them vulnerable
to damage. In literature, the two popular methods explored
for unsupervised DA for bearing health monitoring are: (i)
Divergence-based methods and (ii) Adversarial learning-based
methods. These methods differ in the way they align the source
and target domains for learning domain invariant feature
representation.

Divergence-based methods like Joint Maximum Mean
Discrepancy (JMMD) [1], Multi Kernels Maximum Mean
Discrepancy (MK-MMD) [2], and CORrelation ALignment
(CORAL) [3], extract domain invariant features by minimizing
the respective divergence criteria between the source and
target domain data distributions. On the other hand, adversar-
ial learning-based methods like Domain Adversarial Neural
Network (DANN) [4], and Conditional Domain Adversarial
Network (CDAN) [5] minimize the distribution discrepancy of
the two domains through an adversarial objective with respect
to a domain discriminator for robust fault diagnosis. In general,
adversarial learning-based methods are shown to perform bet-
ter than divergence-based methods for machine fault diagnosis
[6]. However, all these methods require huge amount of data
and consider adaptation between different working conditions
of the same machine. They do not consider adaptation between
different but related machines, that is required in practice. For
example, to transfer the knowledge acquired using the labeled
data from one machine (lab setup or simulator) to different but
related machines (industrial machines) for reliable diagnosis.
Moreover, availability of limited data poses an additional
challenge.

We address this scenario by employing subspace
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interpolation-based methods that have been successfully
applied for feature augmentation in different adaptation
tasks in the field of computer vision [7]–[10]. They seem
to work for limited data scenarios. Unlike former methods,
instead of minimizing the divergence, these methods align
the two domains by generating discriminative features that
are common (or invariant) across both the source and target
domains, enabling cross-domain classification. They generate
intermediate feature representations along a virtual path
connecting the source and target domains. As opposed to
the domain subspaces obtained using Principle Component
Analysis (PCA) that may result in information loss, data-
driven dictionaries (with non-orthogonal columns) have been
employed that provide more flexibility to model and adapt
the domain data [11]–[14]. Although data-driven dictionaries
have proved to be quite successful in different applications,
the approximate synthesis sparse coding algorithms can be
computationally expensive [15]. Hence, Transform learning
(TL) based techniques have gained more importance and
have shown to be advantageous over dictionaries in terms of
accuracy and complexity, and provide improved convergence
[15], [16]. Especially in the image domain, transform learning
methods produce state-of-the-art results [15], [17].

Motivated by the advantages of transform learning, in this
work, we present a novel formulation employing Transform
Learning based subspace interpolation for Unsupervised Do-
main Adaptation (TL-UDA) to address the challenging sce-
nario of adaptation between different but related machines.
To the best of our knowledge, this technique has not been
explored so far in the literature. Unlike the work in [12]
that uses dictionaries, this work uses transforms for modeling
the sub-space that connects the source and target domain.
Interpolated subspaces are learned using the source, inter-
mediate, and target transforms that capture the domain shift
between the source and target domain data. They provide
a domain-invariant feature space for cross-domain analysis.
Initial experimentation on different machine datasets demon-
strates the superior performance of the proposed technique
compared to the state-of-the-art techniques. The improvements
achieved over the dictionary variant (Dictionary Learning for
Unsupervised Domain Adaptation (DL-UDA) [12] are also
highlighted, which indicates the efficacy of the proposed
technique for adaptation tasks.

The paper is organized as follows. Section II presents a brief
background on Transform Learning that forms the basis of our
proposed formulation for domain adaptation. Subsequently,
the problem definition and details of our proposed TL-UDA
method are described in detail in Section III. Section IV
provides the comparisons and results, with the conclusion in
Section V.

II. BACKGROUND ON TRANSFORM LEARNING

Transform learning is an analysis approach for learning data
representations. Given the data X ∈ RL×N with L features
and N samples, a transform T ∈ RK×L of K atoms on

its rows is learnt such that it produces the coefficients Z
∈ RK×N . The basic formulation is given as:

TX = Z (1)

More formally, for learning sparse representations, the trans-
form learning problem is formulated as [16]:

min
T ,Z
∥TX −Z∥2F + λ(∥T ∥2F − log det T ) + µ∥Z∥0. (2)

Here, the additional constraints on T and Z prevent trivial so-
lutions, control the condition number of the learned transform,
and ensure the computed coefficients are sparse, respectively.

The optimization problem in (2) is solved using alternating
minimization technique to obtain the closed form updates of
Z and T [15]. The sub-problem to solve for Z is expressed
as:

Z ← min
Z
∥TX −Z∥2F + µ∥Z∥0 (3)

The closed-form update is obtained by simple hard-
thresholding expressed as:

Z = (abs(TX) ≥ µ). TX (4)

where the term in the bracket is hard thresholded against the
value µ and ’.’ denotes the element-wise product. The sub-
problem to solve for T is expressed as:

T ← min
T
∥TX −Z∥2F + λ(∥T ∥2F − log det T ). (5)

Here, Cholesky decomposition is employed followed by sin-
gular value decomposition to compute the update for T . It is
expressed as: XXT +λI = LLT and L−1XZT = USV T .
This results in the following closed-form update for T :

T̂ = 0.5V (S + (S2 + 2λI)1/2)UTL−1. (6)

With this brief introduction, the proposed formulation for
domain adaptation via transform learning is presented in the
subsequent section.

III. TRANSFORM LEARNING FOR UNSUPERVISED DOMAIN
ADAPTATION

This section describes the problem definition. Subsequently,
the proposed method for unsupervised domain adaptation via
subspace interpolation employing TL method is described in
detail.

A. Problem Definition

The problem focus is on unsupervised adaptation between
the source domain S and target domain T where, the source
and target data have different underlying data distribution.
More formally, given the labeled source domain data Xs ∈
Rd×ns with d features of ns measurements associated with
Y s labels and the target domain data Xt ∈ Rd×nt with d
features of nt measurements, the objective is to estimate the
labels of Xt given the data distributions, P (Xs) ̸= P (Xt) but
the feature and label space are same for both the domains.
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B. Proposed Method TL-UDA

This formulation also follows the idea of subspace interpo-
lation for domain adaptation presented in [12], but uses data-
driven transforms instead of dictionaries to learn the source
S, intermediate and target T domains. Starting with source
domain transform T 0 ∈ Rk×d associated with the source
domain data Xs with k atoms, a set of intermediate transforms
Tm,m ∈ [1,M − 1] (intermediate domains) are learned by
transforming the target data Xt, iteratively in the direction to
reduce the residue on the target data till we reach TM that
best represents the target domain data Xt. Fig. 1 presents the
block diagram of TL-UDA that shows the different subspaces
modeled by different transforms obtained by interpolation on
the target data.

This method employs a training phase for learning the
virtual path that connects S and T domains in terms of
intermediate transforms that capture the domain shift between
the two domains. This helps in generating domain invariant
features for classification. Later, this mapping is utilized in
the test phase for generating domain-invariant features from
the target data for estimating target labels. More details on
the two phases are presented in the following.

1) Training Phase: First the source domain transform T 0

for the source data Xs is learnt by solving:

min
T 0,Z0

∥T 0Xs −Z0∥2F + λ(∥T 0∥2F − log det T 0) + µ∥Z0∥0
(7)

The above expression is similar to (2). The source transform
T 0 and the coefficients Z0 are obtained using the standard
updates (3) to (6).

Considering M subspaces with m ∈ [0,M ], for each m, the
mth domain transform Tm is applied on the target data Xt to
generate the coefficients Zm following the update of (3) and
the residue Jm is computed using the following:

Zm ← min
Zm

∥TmXt −Zm∥2F + µ∥Zm∥0 (8)

Jm = TmXt −Zm (9)

The new transform Tm+1 is computed by estimating ∆Tm

that represent the adjustment in the transform atoms between
the transforms of Tm+1 and Tm that helps in reducing the
residue Jm. ∆Tm is learnt using by solving:

∆Tm←min
∆Tm

∥∆TmJm−Zm∥2F+λ(∥∆Tm∥2F−log det∆Tm)

(10)
The above sub-problem has a form similar to (5), hence we
follow the same update for computing ∆Tm by appropriately
changing the input from X to Jm. Note here the first term
reduces the residue and the second term discourages abrupt
changes in the transforms of adjacent domains.

Subsequently, the new transform Tm+1 is obtained as:

Tm+1 = Tm + η∆Tm (11)

where η is introduced to ensure a smooth transition between
the transforms of neighbouring domains.

Now the new transform Tm+1 associated with the next
intermediate domain is used on the target data to compute the
residue in the feature space. This process continues iteratively
till ∆Tm ≤ τ (threshold), suggesting the learnt intermediate
domain transforms fully absorb the domain shift between S
and T domains. The last obtained transform TM is considered
as the target transform that completely represents the target
data. Kindly note we consider normalization for all the learned
transforms, where the rows of all the transforms are normal-
ized to unit norm. The pseudocode of the proposed TL-UDA
method is summarized in Algorithm 1.

Algorithm 1 Subspace Interpolation using TL for UDA (TL-
UDA)

1: Input: Xs, Xt

2: Parameters: λ, µ, τ, η, k (number of transform atoms)
3: Initialization: Set transform T 0 to random matrix with real

numbers between 0 and 1 drawn from a uniform distribution,
m = 0

4: Compute source transform T 0 and Z0 with Xs using (7).
5: do
6: Transform Xt with Tm using (8).
7: Compute the residue Jm using (9).
8: Estimate the adjustment in transform atoms ∆Tm using (10).
9: Update the transform Tm+1 using (11).

10: Normalize each row of the transform to unit norm.
11: m = m+ 1
12: while (∆Tm ≥ τ )
13: Output: {Tm}Mm=0 (source, intermediate and target transforms)

Once the transition path between the two domains is learnt,
invariant sparse codes (coefficients) are applied across the
source, intermediate, and target transforms ({Tm}Mm=0) to
form new features for classification. The new feature space is
given as: [(T−1

0 Z)
T
, (T−1

1 Z)
T
, .., (T−1

M Z)
T
] where Z ∈ Rk

are the sparse codes generated either by transforming source
data Xs with T 0 (i.e., Z0) or transforming target data Xt with
TM (i.e., ZM ). Since the labels Y s are known only for the
source data Xs, the classifier is trained using features obtained
by applying Z0 across the source, intermediate and target
transforms. Please note, here we have used an SVM classifier
but in general any suitable classifier can be employed.

2) Test Phase: To estimate the labels Y test
t associated

with the test target data Xtest
t , first Ztest

M is computed by
applying TM on Xtest

t . Subsequently, features are computed
by applying Ztest

M across the source, intermediate and target
transforms. These test features are fed to the classifier learnt
in the training phase to estimate the test target labels.

IV. EXPERIMENTS AND RESULTS

In this work, two publicly available bearing datasets, namely
CWRU and Paderborn, are considered for the performance
evaluation of the proposed method. More details on the
datasets, benchmark methods used for comparison, and ex-
perimental results are presented in the subsequent sections.

A. Dataset Description
1) CWRU Dataset: This dataset contains vibration data

acquired from the drive and fan end of the machine for bearing
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Source Domain Target DomainIntermediate Domains

T0 T1 TM-1 TM

T1 = T0 + ΔT0 TM = TM-1 + ΔTM-1TM-1 = TM-2 + ΔTM-2

Fig. 1: Domain Adaptation via Interpolation over M Subspaces using TL

health monitoring. The experimental setup is described in
[18]. It has data for four different working conditions (loading
torques 0, 1, 2, and 3 Hp with speeds of 1797, 1772, 1750,
and 1730 rpm, respectively) collected at a sampling frequency
of 12 kHz. It contains both healthy and faulty bearing data
with faults like Inner-race Fault (IF), Outer-race Fault (OF),
and Bearing-race Fault (BF) of different sizes (0.007, 0.014,
0.021 inches).

2) Paderborn Dataset: This dataset contains current and
vibration data acquired from a test rig consisting of a drive
motor, a torque measurement shaft, the test modules, and a
load motor [19]. It has data for two rotating speeds (900 and
1500 rpm) and two loading torques (0.7 and 0.1 Nm), collected
at a sampling frequency of 64 kHz. It contains healthy and
faulty bearing data with faults like Inner-race Fault (IF) and
Outer-race Fault (OF).

B. Benchmark Methods

Five state-of-the-art methods for UDA focusing on bearing
fault diagnosis are considered for evaluating the performance
of our proposed method. Three of them utilize the diver-
gence loss in terms of Joint Maximum Mean Discrepancy
(JMMD), Multi Kernel Maximum Mean Discrepancy (MK-
MMD), and CORrelation ALignment (CORAL), respectively.
The other two make use of adversarial learning-based net-
works, namely, Domain Adversarial Neural Network (DANN),
and Conditional Domain Adversarial Network (CDAN). The
implementation of all these methods given in [6] is considered
that employs the same deep CNN backbone and bottleneck
architecture for all the methods. Additionally, comparison with
the dictionary variant (DL-UDA) [12] is presented to demon-
strate the enhancement gained with the transform version
for adaptation tasks. Since the improvement obtained with
adaptation is well demonstrated in the literature over methods
without adaptation, here we present the results obtained with
adaptation alone. We experimented with both raw data and
domain-specific features as input to the different methods.
We observed that features turned out to be more effective
than using raw data directly for the challenging limited data
scenario of adaptation between different but related machines.
Domain-specific features combined with representation learn-
ing capability of the different methods resulted in effective
adaptation. Hence, the subsequent section presents the results
obtained with domain-specific features as input to all the
methods.

C. Results and Discussion

Here we present the results for adaptation between CWRU
(0 Hp loading torque and 0.007 inch fault size, drive end) and
Paderborn (900 rpm and 0.7 loading torque) datasets. Note
that the bearing specifications of both datasets and loading
conditions are different, making it a challenging scenario for
adaptation. Paderborn data is downsampled to 12kHz, and the
same number of data samples as CWRU data are used for
adaptation. Three class classification is considered namely,
Healthy, Inner-race Fault (IF), and Outer-race Fault (OF).

For both datasets, vibration data is pre-processed by splitting
into non-overlapping windows of 1024 samples, resulting in
351 samples for each dataset. Five time domain features
relevant to the bearing fault detection, namely RMS, variance,
maximum, kurtosis, and peak-to-peak value [20], are extracted
from each data sample. Experiments are carried out using
these features as input to all the different methods. Data is

TABLE I: Classification Results for CWRU → Paderborn

Method P R F1 Acc
JMMD 42.29 53.86 45.3 53.86
MK-MMD 35.57 36.25 33.42 36.25
CORAL 34.91 45.34 35.98 45.34
DANN 33.55 44.32 36.9 44.32
CDAN 31.3 44.66 34.92 44.66
DL-UDA(k = 10) 82.28 84.25 78.95 84.19
TL-UDA(k = 5) 92.73 92.31 92.19 92.23

randomly split into train-test with 50% samples taken for
training and the remaining considered for testing. Precision
(P), Recall (R), F1-score (F1), and Accuracy (Acc) metrics
are used for performance evaluation. Tables I and II present
the results in %, averaged over five random train-test splits
of the data for CWRU → Paderborn and Paderborn →
CWRU adaptation, respectively. The best-performing method
is highlighted in bold. The number of atoms (k) of the
dictionaries/transforms for the respective methods and other
hyperparameters are tuned using grid search. The optimal
values for TL-UDA method are k = 5, λ = 1, µ = 0.1,
η = 0.04, γ = 0.1. The number of atoms k considered for
the DL and TL-based methods are mentioned in the Tables.
For the datasets considered in this work, convergence for DL-
UDA method was achieved with M = 3 subspaces; hence
the results for TL-UDA are reported for the same number of
subspaces for a fair comparison.
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TABLE II: Classification Results for Paderborn→ CWRU

Method P R F1 Acc
JMMD 76.56 76.93 73.67 76.93
MK-MMD 88.22 82.73 81.74 82.73
CORAL 41.63 54.66 46.21 54.66
DANN 78.7 71.02 67.07 71.02
CDAN 75.11 80.68 76.12 80.68
DL-UDA(k = 10) 89.77 84.63 83.49 86.34
TL-UDA(k = 5) 93.16 90.48 90.12 90.51

From both tables, one can observe that the deep learning-
based benchmark methods do not perform well for the consid-
ered adaptation scenario. This is because more data is required
for them to learn meaningful representations. Moreover, the
accuracy of these methods also depends on the backbone
model used for implementation [6]; hence, the results for the
two adaptation cases are not consistent. While they perform
well for Paderborn → CWRU , the results obtained for
CWRU → Paderborn case are poor. On the other hand, the
subspace-based DL and TL methods demonstrate a superior
performance compared to other benchmarks for both cases.
We observe that with domain features, representation learn-
ing is more effective for data limited scenarios. Moreover,
with small-sized transforms (k = 5, square transform), TL-
UDA performs better than DL-UDA (k = 10, overcomplete
dictionary) for both cases of adaptation. This demonstrates the
computational advantage of using transforms over dictionaries.
The initial results obtained are promising. They indicate the
potential and applicability of the proposed TL-UDA method
for the challenging adaptation scenario in machine inspection
space.

V. CONCLUSION

The paper presents a novel transform learning-based sub-
space interpolation method to link the source and target do-
main data for unsupervised adaptation. Transforms are learned
for the source, intermediate, and target domains to generate a
shared feature space for robust classification. The details on
the formulation and closed-form updates are presented. For
data limited scenario, domain-specific features combined with
representation learning using transforms allows meaningful
mapping to be learnt for effective adaptation. Experimental
results obtained for machine diagnosis using publicly available
bearing datasets demonstrate the effectiveness of the proposed
TL-DA for unsupervised DA. The proposed method shows
improved performance over all the benchmark methods, in-
cluding the dictionary variant, suggesting its applicability to
real-life applications.

In the future, we plan to address more complex adaptation
scenarios like adaptation from reference datasets collected
through lab setups or simulators to real industrial machines.
Please note here that we have considered machine data for
adaptation, but the method is generic and can cater to data
from different application scenarios.
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