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Abstract—The analysis of brain source connectivity using scalp
EEG is conventionally performed in two successive steps: solving
the EEG inverse problem then estimating brain connectivity. Such
sequential manner is sub-optimal since the results of the latter
step are highly subject to the quality of the source localization
one. To address this limitation, a proof of concept study on
solving the EEG inverse problem and inferring brain functional
connectivity in only one single step leading to a new All-in-One
approach is considered in this paper in the context of drug-
resistant epilepsy. Both minimum norm and smoothness on graph
assumptions on the target extended epileptic sources are used to
restore the identifiability of the ill-posed EEG inverse problem.
Preliminary results on realistic simulated surface epileptic EEG
signals confirm the potential of the proposed approach.

Index Terms—Inverse problem, EEG, brain connectivity, graph
learning, proximal optimization.

I. INTRODUCTION

There is an emerging consensus that the human brain
is a complex network of distributed interconnected regions.
Thus, the inference and the analysis of brain connectivity are
fundamental in neuroscience to understand both normal and
pathological brain functions [1] by identifying alterations in
brain networks. Brain connectivity is thus crucial to elucidate
how neurons and neural networks process information [2]–
[4]. A fundamental distinction in connectivity comes from
the notions of structural connectivity, functional connectivity
and effective connectivity [3], [5], [6]. This study concerns
only brain functional connectivity which refers to the statis-
tical dependence measured between the activities of spatially
remote regions. Thanks to its many attractive properties such
as non-invasiveness and high temporal resolution, ElectroEn-
cephaloGraphy (EEG) is considered as a gold standard to
analyse brain activity. High temporal resolution is fundamental
not only for an efficient tracking of brain networks but also
for detecting their possible alteration in neural disorders cases
such as epilepsy typically during interictal and/or ictal periods
[7]. Epilepsy is a group of neurological disorders characterized
by repetitive seizures which are induced by abnormal excessive
or synchronous neuronal activity in certain regions of the
brain, known as epileptogenic. When the therapy by surgery
is the solution to be adopted, the question is then to identify

the epileptogenic network or the Epileptogenic Zone (EZ)
which is responsible for the initiation and/or the propagation of
epileptic seizures. Identifying this epileptogenic network from
surface EEG recordings is typically performed through two
successive processing steps, (i) solving the inverse problem
in EEG and next (ii) inferring connectivity among localized
brain sources using their estimated neural activities. Despite
its widespread use, several downsides can be noted in this se-
quential approach: firstly, the lack of the optimal combination
between the source localization method and the connectivity
measure for an optimal analysis of brain networks. Authors
in [8] has recently addressed this issue in the context of
interictal brain networks identification. More precisely, they
argued that the combination of the weighted Minimum Norm
Estimate (wMNE) algorithm [9] and the Phase Locking Value
(PLV) connectivity measure stands for the most relevant source
localization-brain connectivity combination. However, despite
this interesting results, such a combination is still highly
application dependent. Secondly, the reliability of inferring
brain connectivity is closely tied to the resolution of the
EEG inverse problem. To cope with these aforementioned
limitations and motivated by the promising results we recently
obtained in the context of epileptic source localization using a
steps-coupling strategy [10], a Proof of Concept (POC) study
on solving the EEG inverse problem and the inference of
brain functional connectivity in only one single step leading
to an All-in-One (AiO) algorithm is proposed in this paper.
More precisely, the inference of brain functional connectivity
is formulated here as a graph learning problem [11], [12]
for which the activities of the extended epileptic sources are
assumed to be smooth signals on graph. In the proposed AiO
method, the well-established wMNE algorithm [9], commonly
employed for solving the EEG inverse problem, is reexam-
ined. This reevaluation involves integrating the graph learning
problem as a regularization term into the ill-posed EEG inverse
problem, resulting in the development of the AiOMNE (All-in-
One Minimum Norm Estimate-based) method. The proposed
approach is evaluated on simulated surface epileptic EEG
signals and compared to the classical sequential scheme in
terms of source localization accuracy, using both conventional
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wMNE and sLORETA [13] algorithms, and brain functional
connectivity.

II. NOTATIONS AND DEFINITIONS

Throughout this paper, scalars, vectors and matrices are
typeset with normal italic lower cases, (e.g., a), bold italic
lower cases (e.g., a) and bold italic caps (e.g., A). Sets are
typesets as (e.g., E) and |E| denotes the cardinal of E. The nth
component of a vector a is denoted by an and the (i, j)th entry
of a matrix A is denoted by Ai,j , respectively. The Frobenius
norm of a matrix and the trasposition operator are denoted by
∥.∥F and T, respectively. 1N is a N -dimensional vector of ones
and † symbolises the Moore–Penrose inverse, respectively,

Definition 1: An undirected weighted graph G(V,E,W )
is a finite set of vertices (N vertices with N = |V|) that
are linked with a set of edges E with weights (connection
strengths) defined in the adjacency matrix W .

Definition 2: The adjacency matrix, W , associated with
the undirected weighted graph G(V,E,W ) is symmetric and
defined as follows:

Wi,i = 0, 1 ≤ i ≤ N,

Wi,j ̸= 0, if Vi andVj (i ̸= j) are connected,
Wi,j = 0, otherwise.

(1)

Computing graph weights is conventionally performed using
functions reflecting some similarity measures (ex. correla-
tions, coherence, phase locking, signal intensity, distance, etc.)
among different graph nodes. When no function to compute
the latter weights is specified, the Gaussian kernel weighting
function is employed (see [14] for extensive details).

Definition 3: A graph signal is a function f : V → R

assigning a real value to each graph vertex.
According to the above definition, the nth sample (component)
of a |V|-dimensional graph signal represents the signal value
at the nth vertex.

Definition 4: The graph Laplacian matrix, L, associated
with G(V,E,W ) is defined as L = D−W with D denoting
the graph’s degree matrix which is diagonal with entries
Di,i =

∑N
j=1 Wi,j .

The Laplacian matrix is by construction symmetric positive
semi-definite. Hence, it admits an eigenvalue decomposition,
L = UΛU T, with non-negative eigenvalues λn, 1 ≤ n ≤ N .
It can be shown that the nth eigenvector in U is a graph
Fourier basis vector associated with a frequency (variation of
signal values on the graph) that corresponds to the associated
nth eigenvalue, λn in Λ [15].

Definition 5: A smooth signal on a graph G is a signal that
has a slow variation over the graph’s vertices.
Assume without loss of generality that the eigenvalues of L are
ordered such that 0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λmax, then a graph
Fourier representation of the graph signal at frequency λn is
a smoother graph signal than its representation at frequency
λn+1. Besides, the normalized Laplacian matrix denoted by L̃
where L̃ = D−1/2LD−1/2 = I−D−1/2WD−1/2, is widely
used in graph theory. The latter matrix inherits all properties
enjoyed by the matrix L except that its eigenvalues λ̃n, 1 ≤

n ≤ N satisfy 0 ≤ λ̃n ≤ 2. Thus, the normalized graph
Laplacian matrix, L̃, is preferable to L since, contrary to the
latter matrix, the spectrum of the former is contained in the
range [0, 2] [16]. The smoothness of a graph signal x over the
given graph is quantified using the Laplacian quadratic form
which is defined as follows:

∆L(x) = xTLx =
∑

i,j,i ̸=j

Wi,j(x(i)− x(j))2 (2)

where the summation is taken over all edges. It becomes
evident from equation (2) that the increase in the value of
∆L(x) directly corresponds to a higher degree of signal
variation across the graph nodes.

III. METHODOLOGY

A. Data model

Brain electrical activities are generated by the current
flows that are associated with the transmission of information
between neurons. In order to capture and measure these
activities using surface EEG electrodes, a certain number of
synchronized active neuronal populations is required. These
brain electrical currents can be modeled using a grid of
current dipoles forming the source space. Specifically, these
neurons are oriented perpendicularly to the cortical surface
[17]. Assume now that (i) T time samples of surface EEG
signals have been collected using Ne surface scalp electrodes
and stored in the space-time observation matrix X ∈ RNe×T

and (ii) Nd source signals representing the activities of the Nd

electrical dipoles constituting the source space are encoded
in the signal matrix S ∈ R

Nd×T . Assume also that the
source space can be divided into two sub-spaces, the one
corresponding to P extended sources that are responsible for
the generation of the events of interest and the one containing
the rest of grid dipoles. Note that an extended source stands
for the union contiguous areas (patches) of cortex with highly
electrical dipoles of synchronized activities. The observed
EEG data can then be modeled as a linear mixture of the
source signals as follows:

X ≈ GS =
∑
k∈Ωe

gksk
T +

∑
ℓ∈Ωb

gℓsℓ
T (3)

where the mixing operator G = [g1, · · · , gNd
] ∈ R

N×Nd

stands for the lead-field matrix which characterizes the attenu-
ation inflected on the dipole signals before being measured by
the surface scalp electrodes. Besides, vectors gk and sk stand
respectively for the lead-field vector associated to the kth grid
dipole and the kth row of S. The set Ωe = ∪P

p=1Ωp, P << Ne

denotes the set of indices of all grid dipoles involved in the
generation of the events of interest with Ωp being the set of
indices of all grid dipoles constituting the pth epileptic patch.
As far as the set Ωb is concerned, it contains the indices of grid
dipoles contributing to the generation of normal brain activity,
well-known as background activity.
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B. The All-in-One method

According to equation (3), solving the inverse problem in
EEG consists in estimating the source matrix, S, using the
assumed known matrices X and G. As the number of epileptic
grid dipoles to be estimated is generally higher than the
number of surface EEG electrodes, the EEG inverse problem
is ill-posed and hence should be regularized to restore its
identifiability. A natural approach to solve the regularized EEG
inverse problem consists then in finding the solution, Ŝ, in a
least squares sense as follows:

Ŝ = argmin
S

|||X −GS||2F +

C∑
c=1

λcfc(S) (4)

where different prior informations on the target sources are
encoded in the regularization terms fc(S) and λc ∈ R∗, 1 ≤
c ≤ C is the cth regularization parameter. It is note worthy that
some EEG inverse problem methods consider only one time
sample rather than the entire temporal structure of the data.
For those methods, the data matrix X and the source matrix
S are replaced in the above optimization problem (4) by the
column vectors x and s, respectively. Several assumptions on
the target sources can be used to design fc, such as minimum
energy [9], [18], sparsity [19], [20], smoothness, etc. In this
POC study, the assumption of sources of minimum energy is
considered as initially proposed in [9]. Besides, EEG signals
are well qualified as graph signals as brain activities can
be mapped on a graph (network) with nodes corresponding
to cortical grid dipoles and edges reflecting the functional
coherence/synchronization between these nodes. Furthermore,
as the activity of each epileptic patch is induced by hyper-
synchronized activities of the patch’s grid-dipoles, patch activ-
ity is, according to Definition 5, a smooth signal on graph. This
smoothness measure is, according to equation (2), governed by
the graph (normalized) Laplacian matrix which is to be learned
here. Thus, based on the assumptions of sources of minimum
energy and smooth on graph, the proposed AiOMNE approach
addresses the following optimization problem:

minimize
S,L,D

∥X −GS∥2F + λ1∥BS∥2F+λ2∥L̃
1/2

S∥2F

+λ3∥L̃∥2F
s.t. L̃ = D−1/2LD−1/2

Li,j < 0, 1 ≤ i ̸= j ≤ Nd,L1Nd
= 0

(5)

where B is a diagonal weight matrix with Bd,d = ∥gd∥−1
2 ,

1 ≤ d ≤ Nd as suggested initially in the wMNE algorithm
[9] with gd denoting the dth column vector of G. The
additional regularization term ∥L̃∥2F controls the distribution
of graph edge weights [11]. Regarding the other regularization
terms, ||BS||2F and ||L̃−1/2

S||2F , they respectively encode the
minimum energy and the smoothness on graph assumptions
of the target epileptic sources. Solving the above optimization
problem is performed iteratively in an alternative way. More
precisely, at each iteration, each variable is computed while
keeping the other one fixed to its last estimate. Then, by

looking for the stationary points of the above cost function
in both S and L̃ with L̃ = D−1/2LD−1/2, a closed form
solution of S and L is obtained:

S = Ψ−1GT(INe
+GΨGT)−1X (6)

L =
−2λ3

λ2
D1/2SSTD1/2 (7)

where Ψ = λ1B
TB + λ2D

−1/2LD−1/2. As far as the
diagonal degree matrix D is concerned, it is computed by
setting its ith diagonal element to the corresponding ith
diagonal element of the estimated graph Laplacian matrix L
(7). The negativity constraint on the off-diagonal elements of
L is simply handled at each iteration by setting them to zero
when their current estimates are positive. The algorithm stops
when the relative error on the estimation of L exhibits between
two successive iterations a value that is smaller or equal to a
predefined threshold or when the the maximum number of
iterations is reached.

IV. NUMERICAL RESULTS

The performance of the proposed algorithm is assessed on
realistic simulated interictal epileptic EEG data (epileptiform
spike) and compared to the classical sequential scheme using
either wMNE or sLORETA methods. To this end, scalp
epileptic EEG signals for Ne = 91 electrodes, T = 200
time instants at the sampling rate of 256 Hz are generated.
The employed source space is composed of D = 19626 grid
dipoles located on the cortical surface. The lead-field matrix
is generated using the ASA software (ASA, ANT, Enschede,
Netherlands) and a realistic head model composed of three
compartments representing the brain, the skull, and the scalp.
We consider two epileptic patches. One patch located on
the Inferior Frontal gyrus (InfFr) and another patch on the
Occipital-Temporal gyrus (OccTe). Each patch includes 100
grid dipoles corresponding to a cortical area of approximately
5cm2. Gaussian background activity is attributed to all grid
dipoles outside the two epileptic patches. The amplitude of the
background activity is adjusted to the amplitude of the depth
EEG signals to get a realistic Signal to Noise Ratio (SNR)
that verifies ||GS||F /||Ξ||F ≈ 1 where Ξ ∈ R

N×T denote
the noise matrix. Regularization parameters λ1, λ2 and λ3 are
automatically selected from a range of tested values based
on a heuristic criterion. Retained values of λ1, λ2 and λ3 are
70, 60 and 20, respectively. To assess the performance of the
two considered source imaging approaches, their respective
localization accuracy is evaluated in terms of the Dipole
Localization Error (DLE) [21] criterion:

DLE =
1

2Q

∑
k∈I

min
ℓ∈Î

||rk − rℓ||2 +
1

2Q̂

∑
ℓ∈Î

min
k∈I

||rk − rℓ||2

where I and Î denote the original and the estimated sets of
indices of all dipoles belonging to an active patch, Q and
Q̂ are the numbers of original and estimated active dipoles,
and rk denotes the position of the k-th source dipole. To
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Fig. 1. DLE of wMNE, sLORETA and AiOMNE methods for different
threshold values β.

determine the estimated sets of active dipoles for the single-
step approach, we threshold the amplitudes of the estimated
source distributions.

The DLE is averaged over 30 realizations of noisy EEG
signals. More precisely, to compare the estimated source
configuration to the ground truth, we consider a number of
active estimated dipoles that is equal or as close as possible
to the one of the true patch dipoles. To this end, a suitable
threshold β is applied to the absolute value of AiOMNE,
wMNE and sLORETA solutions. Figure 1 shows the localiza-
tion accuracy of wMNE, sLORETA and AiOMNE in terms of
DLE as a function of the threshold β which varies between
0.1 and 0.9. Globally when the adequate threshold is chosen
for each method, a quasi-equivalent performance of the three
methods is to be noticed. In this case, the best DLE values
are equal to 2.91, 4.15 and 2.95 for AiOMNE, sLORETA and
wMNE, respectively. Besides, it can also be noted that contrary
to wMNE and sLORETA where a relatively high threshold
(i.e. β = 0.5) is to be considered for a good localization
results of the two patches, the proposed AiOMNE method
seems to be more effective for lower threshold (i.e., β =
0.2). This suggests that, contrary to wMNE and sLORETA
which generally lead to blurred source localization results,
the solution provided by AiOMNE is to some extent more
accurate. This is confirmed in Figure 2 which illustrates, for
two different thresholds β = 0.2 and β = 0.5, an example
of source localization using wMNE, sLORETA and AiOMNE
methods. Clearly, the reconstructed sources with wMNE and
sLORETA for β = 0.2 are blurred. In addition, in the case of
β = 0.5, even if the solution obtained by AiOMNE is sparse,
it should be noticed that the barycentres of the two estimated
patches coincide with the ground truth. To further assess the
similarity between the estimated network and the ground truth,
binary connectivity maps associated to the three considered
methods are presented in Figure 3. Regarding the connectivity
maps related to wMNE and sLORETA algorithms, shown in
Figure 3, each of them stands for a binary representation of
its associated correlation matrix that is computed using the
reconstructed neural activities of the localized two patches
(see Figure 2). As far as the connectivity map related to
the proposed AiOMNE approach is concerned, it represents

Fig. 2. Brain source localization by wMNE, sLORETA and AiOMNE for
two threshold values β = 0.2 and β = 0.5.

TABLE I
HD BETWEEN BINARY CONNECTIVITY MAPS OF WMNE, SLORETA,
AIOMNE AND THE GROUND TRUTH FOR TWO THRESHOLD VALUES

β = 0.2 AND β = 0.5.

Hamming Distance (HD)
wMNE sLORETA AiOMNE

β = 0.2 0.0015 0.0046 0.0001
β = 0.5 0.0001 0.0003 0.0001

also a binary representation of the graph adjacency matrix
that is derived from the estimated graph Laplacian one. To
create the binary connectivity map, a specific threshold is
applied to the correlation/adjacency matrix. This threshold is
determined by a predefined percentage of the highest value in
the matrix. If an entry in the matrix has a value lower than this
threshold, it is set to zero. Conversely, if the value is equal to
or greater than the threshold, it is set to one. Once the binary
matrices are computed, the similarity between an estimated
connectivity and the one of the ground truth is computed
using Hamming Distance (HD), for the two threshold values
β = 0.2 and β = 0.5. The obtained results, as shown
in Table I, demonstrate that the proposed AiOMNE method
exhibits higher similarity in terms of connectivity patterns
with the ground truth compared to wMNE and sLORETA,
regardless of the employed threshold. According to Table I,
the AiOMN algorithm exhibits significant improvements in
terms of HD (Hamming Distance) compared to sLORETA and
wMNE. Specifically, for β = 0.2, the AiOMNE method shows
an improvement of approximately 46 times over sLORETA
and around 14 times over wMNE. Similarly, for β = 0.5,
the AiOMNE method demonstrates an improvement of about
4 times over sLORETA and around 2 times over wMNE in
terms of HD.

The agreement between the DLE results and the previously
mentioned findings further substantiates the superiority of
the proposed AiOMNE method. It consistently achieves a
higher similarity with the ground truth, even when utilizing
a relatively small threshold value of β = 0.2.
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Fig. 3. Binary connectivity maps obtained by the sequential strategy where
wMNE and sLORETA being used in the source localization step and
AiOMNE, for different threshold values β and their respective Hamming
Distance (HD) to the ground truth.

V. CONCLUSION

In this paper, a proof of concept study on solving simulta-
neously both the inverse problem in EEG and the inference of
brain functional connectivity in the context of drug-resistant
epilepsy was proposed. The new proposed approach, named
AiOMNE, relies on the physiological assumption that epileptic
EEG signals are smooth signals on graph. More precisely, the
AiOMNE revisits the conventional wMNE approach by incor-
porating the smoothness on graph assumption as an additional
regularization term. Preliminary results on realistic synthetic
EEG data confirmed that the AiOMNE solution (i) attenuates
the well-known blurred source localization problem which is
inherent to wMNE leading to a more focal source localization
solutions compared to wMNE and sLORETA methods and
(ii) provides a relatively good estimation of brain functional
connectivity.
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