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Abstract—This paper presents a new method for joint de-
blurring and super-resolution of 3D single-photon Lidar images.
Adopting a plug-and-play framework, the method alternates
between a data fidelity iterate, and a guided filtering (GF)
step which can be performed by any existing GF algorithm.
The resulting analytical updates are efficient and are easily
adapted to different upscaling factors or arbitrary blur kernels.
Thanks to the GF algorithm, the algorithm shows good denoising
performance when imaging in extreme conditions leading to
high background noise. Experiments on simulated and real data
demonstrate the good performance of the proposed strategy in
terms of depth maps deblurring and super-resolution in presence
of high levels of noise.

Index Terms—3D Reconstruction, Single-Photon Imaging, Li-
dar, Deblurring, Super-Resolution, Plug-and-PLay.

I. INTRODUCTION

3D imaging with single-photon Lidar (SPL) systems is an
emerging technology with an increasing impact in several
applications [1], [2]. SPL operates by sending light pulses and
detecting the reflected photons while measuring their time-of-
flight, which contain target’s depth and reflectivity informa-
tion. Recent technological advances have shown increasing use
of sensor SPAD arrays (single-photon avalanche diodes) which
enable parallel scanning of multiple pixels, hence enabling fast
imaging. However, the arrays are often small leading to low-
resolution depth images. Imaging in extreme conditions also
affects the quality of measured data. Indeed, imaging through
obscurants [3]-[5] (e.g., fog, underwater) or in bright condi-
tions increase the noise background, while imaging at long
range (km-range) [6] or fast moving objects might introduce
an X-Y spatial blur. These limitations highlight the need for
an advanced processing strategy to deliver high quality depth
estimates.

Several reconstruction methods have been designed to tackle
these challenges. A focus has been on designing denoising
methods [4], [7]-[11] exploiting data statistics and spatial
correlations to recover clean 3D information. Improving the
spatial resolution of Lidar data also investigated using sta-
tistical methods [5], or deep-leaning (DL) methods such as
[12]-[14]. However, these DL methods require re-training
the model for each imaging system (e.g. due to different
impulse response or imaging conditions), or when changing
the upscaling factor. Few methods have also tackled the motion
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blur affecting single-photon data when imaging fast moving
objects [15] or for long range imaging as in [16].

This paper proposes a new plug-and-play (PnP) algorithm
for joint deblurring and guided super-resolution of SPL depth
and reflectivity images. The method alternates between a data
fidelity step and guided filter (GF) step. The latter can be
performed by any existing GF algorithm, as introduced in the
PnP framework [17]. In this paper, we considered the guided
image filter (GIF) from [18] as it leads to efficient analytical
updates. The proposed method can be used with different
upscaling factors and accounts for arbitrary but known blur
kernels that can result from motion or long-range imaging.
Results on simulated and real data confirm the performance
of the proposed method for denoising, deblurring and super-
resolution.

The paper is organized as follows. Section II introduces
the observation model and corresponding challenges. The
proposed method is then introduced in Section III. Results
on simulated and real data are presented in Sections IV and
V. Conclusions and future are finally reported in Section VI.

II. PROBLEM STATEMENT
A. Approximate Lidar observation model

The photons detected by a single photon Lidar system are
usually collected into a histogram of counts with respect to
their TOFs. Denoting y,; the histogram at the nth pixel for
the tth time of flight, it is usually assumed to follow a Poisson
distribution P(.) as follows

Yn,t ~ P (xn,t) 3 with Tn,t = Tn h (t - dn) + bn,ta (l)

where we assume the presence of a single target’s peak per
pixel with r,, denoting the target’s reflectivity, d,, the target’s
depth, h the system impulse response function (IRF), and b,, ;
the background of counts due to the environment. In what
follows, we assume a normalized IRF: Zle h(t—d,) =1
with the total number of bins 7" and independent observations
with respect to different pixels, leading to

N T
p(Y | d7lr.) = H Hp(yn,t | dn77an)7 (2)
n=1t=1

with d = {d,} and » = {r,} are N x 1 vectors. Our
goal is to estimate high-resolution depth parameter from these
observations. A common strategy to obtain efficient estimators
is to approximate the likelihood term [4], [19], and to enforce
regularization constraints to the resulting estimation problem.
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In what follows, we approximate the Poisson likelihood with
a Gaussian distribution [20]. This is a valid approximation for
recent SPAD array sensors [21], [22] operating in the dense
photon regime (although we will show in experiments that
the proposed model also provides good results in the sparse
photon case). Also, it is common to assume the absence of
the background or a pre-processing step removing it, in which
case the maximum likelihood estimate d,, of the depth reduces
to a matched filter

dn (y,) = max {Z Yn,ch(t — d)} = max {y, @ h(d)}
' 3)

where ®; denotes a temporal cross-correlation and h denotes
the impulse response function. The reflectivity maximum
likelihood estimate can be obtained as the sum of photons
around the detected peak.

B. Challenges

Recent advances in single-photon technology have allowed
the development of SPAD arrays, enabling fast imaging.
However, current arrays often have a limited number of pixels,
which leads to low resolution images. In addition, real-world
applications involve long-range imaging where the laser beam
might cover multiple pixels, and imaging of fast moving
objects compared to the imaging speed. Both result in blurry
images due to the convolution of the point returns with a X-Y
spatial kernel. This affects the observation model that can be
written as

Y= (w:t & k) \Ls +e (4)

where y., is the vector of counts at all pixels for the ¢th time
bin, x.; represents the high-resolution image, k is an spatial
blur kernel, ® denotes the circular spatial convolution, | is
a spatial downsampling by s and e ~ A(0,7,,) is a Gaussian
noise, with 7, = 1 a noise variance independent of «. In this
paper, we adopt a joint super-resolution and deblurring strategy
to enhance the resolution of the resulting images, sharpen the
observed depth images and recover small features. In what
follows, we drop the index in y., for simplicity, but operations
should be understood to be applied to each tth frame.

III. PROPOSED METHOD

A. Plug-and-Play framework

The high-resolution image x can be estimated by minimiz-
ing the regularized negative log-likelihood as follows

min [ly — (z @ k) L. [|* + A(x) (5)

where ¢(x) is a regularization term enforcing suitable struc-
ture for x. In the deep image prior framework [23], it was
shown that modelling  using a neural network provides a
good prior as follows

min ||y — [fo(g) ® k] I 12+ ey () (6)

where fg(g) is a non-linear function depending on parameters
0, and a guiding image g. In this paper, we adopt the half-
quadratic splitting algorithm that introduces a latent variable
z leading to

min ||y — (z @ k) L |I* + pllz = fo(g@)|I* + €(0). (D

Minimizing this cost function alternates between minimization
of an {5 — /5 term to update z

min[ly — (z @ k) Lo |* + pllz = fo(9)I1%, (8)
and the term
Hgnullz—fe(g)\l2+6w(9)- 9)

which is the guided filtering of z using the guidance g. Under
the PnP, this step can be replaced by any state-of-the-art guided
filter.

B. Proposed model for efficient inference

In this paper, we aim for efficient inference that can be im-
plemented on-chip in imaging sensors. Therefore, we propose
to consider the guided image filtering model [18] to represent
fo(g). More precisely, this model assumes the filtered image
is a linear transformation of g, with coefficients 8 = (a, b),
in a w X w window w,, centered at the nth pixel. Model (7)
reduces to

min

a,b,z

ly—(z@k) s>+

quLV:l Yicw, (angi + by — Zi)2 + Gai} (10)

which can be expressed as

min [ly—(z @ k) Lo ||+ pllz—z(a,b,g)|[* +ellal”. A1)
Interestingly, the iterative updates in (9) can be analytically
obtained. The ¢2-¢2 minimization problem w.rt. z can be
efficiently solved in the FFT domain as in [24], [25]

1 _

> = ]_——1 Zld- ]_-(k) Os j(k)d) lis
g (FRIF(K)) 4o+

12)
where d = F(k)F(y 1.) + uF(x), the FFT, inverse FFT
operators are denoted by F,F ! and F is the complex
conjugate of F, ®4 represents element-wise multiplication to
the s x s distinct blocks of F(k), || is the block downsampler
by averaging the s x s distinct blocks, 15 is s-fold upsampler
by filling the new entries with zeros.

The minimization problems w.r.t. @ and b can also be solved
analytically as in [18]

(ZiEwn ai) gn + (Ziewn bi)

Ty = ,Vn (13)
]
where |w| is the number of pixels in w;,,
1 (Z : ) —miE
jew; 9i%j ) — MiZi
a; = El /< ,and b; = z; —a;m; (14)

af—l—e
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where mi,af are the mean and variance of g in w;, and
Z; is the mean of z in w;. This shows that all updates are
analytical allowing fast inference of these parameters. After
these updates, the depth map is estimated as in (3). Note
here that the guidance is applied to the histogram of counts
instead of directly applying it to the depth map, hence reducing
texture transfer issues as observed when applying guided
image filtering on the depth map. Algo. 1 summarizes the
main steps of the overall deblurring and super-resolution 3D
(DS3D) filtering approach.

Algorithm 1 DS3D - guided super-resolution method
1: Input: Lidar data Y, IRF: h, guidance: g

while conv= 0 do
Update z analytically using (12) as in [24], [25]
Update x analytically using (13) as in [18]

end while

. Compute d (2) asin (3)

: Output: z,x,d

Nk R

IV. RESULTS ON SIMULATED DATA

The performance of the proposed algorithm is evaluated
on simulated data by considering three aspects: denoising,
deblurring and super-resolution. We first introduce the con-
sidered data, comparison algorithms and evaluation criteria.
Then, we describe the results obtained regarding each aspect.
All simulations were performed on a Matlab R2021a on a
computer with Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz
and 128GB RAM.

A. Data, algorithms and evaluation criteria

The 555 x 695 depth and intensity images of the art scene
(see [26]) are used to simulate Lidar data according to the
model in (1). The resulting histograms of counts have T = 300
time bins (with 20ps per time bin), and use a real system im-
pulse response (leading-edge of 3 bins and trailing-edge of 26
bins). We considered different levels of signal-to-background

. _ S T
ratio (SBR= N

PPP=1/N 22[:1 23:1 %+ Fig. 2 (left) shows the reference
point cloud. The proposed deblurring and super-resolution 3D
algorithm (denoted DS3D) is compared to several algorithms,
i.e., the classical maximum-likelihood algorithm, the unmixing
algorithm (UA) [27] and the multiscale Bayesian 3D recon-
struction (MB3D) algorithm [4]. The performance is evaluated
qualitatively by visualizing the reconstructed depth images and
point clouds and quantitatively using the depth absolute error
(¢7 error between the ground-truth and reconstructed depth
maps).

) and average photon-per-pixel

B. Depth denoising

This section evaluates the denoising capabilities of the pro-
posed algorithm. Note that DS3D was not designed to perform
this task, however, the iterative guided filtering step improves
the quality of the processed histograms, hence allowing an
improved depth estimation and outliers rejection. In this part,

we assume the absence of a blur kernel and set the downsam-
pling factor to s = 1. Fig. 1 shows the obtained DAE results
when considering the Class., UA, MB3D and the proposed
DS3D algorithms. As expected, the classical algorithm shows
the worst performance. The DS3D shows good results even
at extreme SBR and PPP levels. The DS3D shows better
performance than the UA algorithm, and compares well with
the denoising MB3D algorithm.
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Fig. 1. Depth Absolute Error (DAE) in log scale for different levels of SBR
and PPP and several algorithms, i.e., Classical, UA [27], MB3D [4], and
proposed DS3D algorithms.

C. Joint depth super-resolution and deblurring

In contrast to deep-learning super-resolution methods [13],
[14] that require re-training for each upscaling factor s, the
DS3D generalizes well to different s. In addition, it can
also account for arbitrary blurring kernels due to sensor low-
resolution or motion blur. To highlight these aspects, we
evaluated DS3D by considering two scaling factors s = {4, 8}
and considered two blurring kernels, a uniform kernel to
simulate a macro pixel in low-resolution sensors, and one
arbitrary kernel (although other kernels can be easily stud-
ied). We simulated high-resolution data using a PPP= 10
photons and SBR= 1 and then applied the downscaling and
blur operations as in (5). Fig. 2 shows the obtained point-
cloud, and the corresponding blurring kernels (see top-right).
This figure shows sparse point-cloud with multiple outliers
when considering the classical algorithm. The DS3D shows
cleaner point clouds, and better features. Fig. 3 shows the
equivalent depth images for uniform blur kernel highlighting
better reconstructions of small objects/features.

V. RESULTS ON REAL DATA

We evaluate DS3D on real data acquired in extreme con-
ditions and provided in [13]. We focus on the elephant
scene which comprises a 256 x 256 x 1536 histogram and
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Fig. 2. 3D reconstructions of the art scene with (top row) the classical and (bottom row) DS3D algorithms. The two first columns show uniform blurring
kernel, and column three and four an arbitrary kernel. The SR scaling factor is indicated in the subplot titles.
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Fig. 3. Depth maps for (top) the classical and (bottom) the DS3D algorithms
when applied to low resolution images with uniform blur kernels.

a 1024 x 1024 reflectivity image used as a guide. We also
compare with GIF when applied to filter the histogram of
counts followed by a depth estimation as in (3). Fig. 4
(left column) presents the reconstructed depth maps with
the classical, GIF and DS3D algorithms, highlighting cleaner
results for the latter. To further evaluate the SR capabilities of
DS3D, we have also downsampled the data to 64 x 64 x 1536
histogram and a 256 x 256 reflectivity and applied DS3D x4.
Fig. 4 (right column) confirms the good results of DS3D.

VI. CONCLUSIONS

This paper has presented a new plug-and-play method for
joint depth deblurring and super-resolution. The method can
be easily used with different downscaling factors and arbi-
trary blur kernels. The guided image filtering [18] algorithm
was used to deliver analytical iterative steps, resulting in an
efficient estimation. Results indicated good denoising, super-
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1024x1024 256x256
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GIF
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80
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Fig. 4. Reconstructed depth maps for the DS3D x4 algorithm on real data.
(Left) 1024 x 1024 image, (right) 256 X 256 image.

resolution and deblurring performance. Future work will con-
sider other deep-learning guiding filters, and generalizations
to high-dimension super-resolution (3D videos, multispectral
3D imaging).
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