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Abstract—Domain adaptation has emerged as a useful tech-
nology that leverages the knowledge learned from labeled data
in the source domain to build an effective classifier for the target
domain, given that the source and target data have different
underlying distributions. Most of the existing techniques aim to
address the marginal distribution discrepancy alone, ignoring the
conditional distribution divergence that may exist between the
two domains. In order to achieve good adaptation performance,
both the marginal and conditional distribution of the source and
target data need to be aligned. The problem becomes challenging
when the data is limited, and no labels are available for the
target domain data. To address this scenario, in this paper,
we propose a novel formulation that utilizes the concepts of
Class-wise Maximum Mean Discrepancy and label propagation
over the graph for unsupervised domain adaptation. We have
applied it to the challenging scenario of adaptation between
physically different but related machines for fault diagnosis. Two
publicly available bearing fault datasets have been employed
for performance evaluation. The experimental results indicate
the superior performance of the proposed method compared to
the state-of-the-art methods showing efficient transfer learning
capabilities for machine fault diagnosis.

Index Terms—Domain adaptation, Maximum mean discrep-
ancy, Graph total variation, Label propagation, Machine fault
diagnosis

I. INTRODUCTION

Classical machine learning algorithms assume that, the
training and test data follow the same data distribution. How-
ever, in practice, this assumption does not always hold, which
leads to deterioration in their performance [1]. Interestingly,
Domain Adaptation (DA) has emerged as one of the upcoming
methods to tackle this issue, where the training (source) and
test (target) data can be from different distributions [2]. DA
relies on leveraging the information learned from well studied
source domain to improve the classification performance on
the target domain. According to the availability of label
information in the target domain, DA can be categorized as
Unsupervised DA (UDA) where the target domain is com-
pletely unlabeled, and semi-supervised DA (SDA) where the
target domain has limited labels [3].

Among all the existing DA methods, divergence and ad-
versarial learning based techniques have been successfully
applied in different applications [4]–[9]. Divergence based
DA techniques map instances from both source and target
domains to a common feature space to learn domain invari-
ant features [4]–[7]. However, they fail to perform when a
large distribution discrepancy exists between the two domains.

Adversarial learning based DA methods are able to handle
such a scenario, as they learn data translation between source
and target domains by training a generator and discriminator
network [8], [9]. However, these methods do not guarantee that
class discriminability is preserved during the data translation
[10]. Also, they require massive data for training, which
may not be always available in many practical application
scenarios.

Apart from the methods mentioned above, graph-based
techniques have recently been used for DA, as graphs can
capture the actual data manifolds effectively [11]. The exist-
ing techniques are based on Graph Convolutional Networks
(GCN) [12], [13], Graph Signal Processing (GSP) [11], [14],
and hybrid methods that utilize divergence method with graph
[15] to learn domain invariant features. The work in [12] pro-
posed an unsupervised Domain Adaptive Network Embedding
(DANE) framework using GCN and adversarial network that
learns transferable embeddings between the source and target
domain. Another UDA method [13] utilized a dual GCN for
local and global consistency for feature aggregation. Although
popular, these methods ignore the property of graph structured
data while carrying out classification [16]. To effectively
exploit the underlying structure of the data, the work in [14]
utilized the concepts of GSP for SDA. The method is based
on aligning the Fourier bases of the graphs constructed using
source and target domain data. The spectrum of the labels
learned from the source graph is transferred to the target
graph for DA. This work was extended by incorporating
graph learning into the optimization formulation that aligns the
spectrum of the graphs corresponding to the source and target
data [11], which resulted in improved performance. Another
work [15] proposed a Graph Adaptive Knowledge Transfer
(GAKT) method that jointly optimized the domain invariant
feature learning by weighted class-wise adaptation loss and
label propagation over the graph. A joint graph is employed
by augmenting source and target domain data to propagate
the labels from known source to unknown target data. All
the aforementioned methods mainly focus on computer vision
related DA applications. However, the focus of our work is
on time series data for the challenging adaptation scenario of
machine inspection.

In most practical applications of machine inspection, access
to labeled data is difficult, as manual labeling is time consum-
ing and inducing faults in machines is not economically viable.
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Moreover, labeled data of every machine is not available. Thus,
transferring the knowledge learned from labeled data of one
machine (source) to a different but related machine (target)
is important and required in practice. This is a challenging
adaptation scenario since the data distribution of both domains
is significantly different due to different working conditions,
sampling frequency, location of sensor placement, etc.

To address these challenges, we propose a novel Graph As-
sisted Unsupervised Domain Adaptation (GA-UDA) method
for machine fault diagnosis in this paper. It carries out
domain adaptation in two stages. In the first stage, Class-
wise MMD (CMMD) loss is minimized to transform the data
from both domains to a shared feature space. In the second
stage, the augmented transformed (projected) data from both
domains are utilized to construct a joint graph. Subsequently,
the labels of target domain data are estimated through label
propagation over the joint graph. This work is similar in
nature to the GAKT method [15]. However, unlike the fixed
joint graph considered in GAKT learnt using raw sensor data,
the proposed method iteratively updates the joint graph using
transformed features of both domains obtained through the
optimization formulation. This helps in addressing significant
distribution shift between the two domains. We have evaluated
our method for the challenging scenario of adaptation between
different but related machines where the data from both
domains is limited. Application to bearing fault diagnosis
has been considered since bearings are critical elements of
rotating machines that are more vulnerable to damage [17].
Experimental results are provided with Case Western Reserve
University (CWRU) [18], and Paderborn University datasets
[19]. The results show that GA-UDA method outperforms all
the state-of-the-art methods, which indicates the effectiveness
of the proposed method for the considered adaptation task.

The rest of the paper is organized as follows. Section
II presents the problem statement, and a brief background
of the CMMD and GTV used to formulate our proposed
method. A detailed description of the proposed GA-UDA
method is provided in Section III. Section IV presents the
experimental results with details of the datasets and benchmark
methods used for comparison. Finally, Section V presents the
conclusion.

II. PROBLEM STATEMENT AND BACKGROUND

This section briefly presents the problem statement and the
necessary details on the CMMD and GTV to help understand
our proposed GA-UDA method.

A. Problem Statement

The focus of this work is on UDA. Let the labeled
source domain S data be expressed as {Xs, Ys} =
{(xs1 , ys1), ...., (xsns

, ysns
)}, where Xs ∈ Rm×ns denotes

m features of ns samples and Ys ∈ Rns×C is the one-hot
encoded labels with C number of classes. The unlabeled target
domain T data be expressed as {Xt} = {xt1 , ...., xtnt

}, where
Xt ∈ Rm×nt denotes m features of nt samples. Given that
distribution discrepancy exists between S and T , the task is to

predict the labels of the target domain data Xt, assuming the
feature and label space to be the same across both domains.

B. Class-wise Maximum Mean Discrepancy
Maximum Mean Discrepancy (MMD) is one of the popular

techniques used to address the domain discrepancy between
the S and T domains [15], [20]. It computes the deviation of
sample means of two domains in the projected space. More
formally, the MMD loss C1 is expressed as [15]:

C1(Ps, Pt) = ∥ 1

ns

ns∑
i=1

PT
s xsi −

1

nt

nt∑
j=1

PT
t xtj∥22

= ∥P
T
s Xs1ns

ns
− PT

t Xt1nt

nt
∥22 (1)

where Ps ∈ Rm×k and Pt ∈ Rm×k are two projection
matrices with k < m, xsi and xtj are the ith and jth sample
of Xs and Xt, 1ns and 1nt are column vectors of all one of
size ns and nt respectively. By reducing the deviation (loss),
MMD tries to align the marginal distribution of the S and T
data. However, it fails to address the conditional distribution
discrepancy that may exist between the two domains [21].

To address this, Class-wise Maximum Mean Discrepancy
(CMMD) has been proposed that computes the difference
between sample means of two similar class data from different
domains [22]. This method requires the knowledge of labels
for both domains. Since the target domain data is unlabeled,
in most works, pseudo labels are generated by applying the
classifier trained on labeled source domain data to the target
domain data [20]. The weighted CMMD loss, C2 is expressed
as [15]:

C2(Ps,Pt,Ft) =

C∑
c=1

∥ 1

nc
s

nc
s∑

i=1

PT
s xc

si−
1

nc
t

nt∑
j=1

f
(c,j)
t PT

t xtj∥22

= ∥PT
s XsYsNs − PT

t XtFtNt∥2F (2)

where f
(c,j)
t denotes the probability of the jth target domain

data belonging to the cth category are obtained from the target
label predictions (pseudo labels Ft), and ∥.∥F is the frobenius
norm. nc

s and nc
t denote the number of samples in the cth

class for source and target domain respectively. Ns and Nt are
diagonal matrices of size C×C with cth diagonal elements as
1
nc
s

and 1
nc
t

respectively. Here, nc
t is calculated as

∑nt

j=1 f
(c,j)
t .

C. Label Propagation using Graph Total Variation
Graph signal processing has emerged as one of the most

effective methods for signal modeling [23]. It involves a graph
structure G and a graph signal F residing on that structure.
The graph structure is represented as G = {V,E,W}, where
V is the set of vertices and E is the set of edges connecting
those vertices with weights specified in the weight matrix W .
Given the data X ∈ Rm×n with m features of n samples,
a graph of n vertices can be constructed using W ∈ Rn×n

obtained from Gaussian kernel that is expressed as [23]:

Wij = exp(−∥xi − xj∥2/2σ2) (3)
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Fig. 1. Block diagram of the proposed Graph-Assisted Method for Unsupervised Domain Adaptation

where σ is the scaling factor, and xi, xj are the feature vectors
at ith and jth vertices of the graph, respectively.

One of the important matrices associated with graphs is
the graph Laplacian. The un-normalized graph Laplacian is
expressed as L = D − W ∈ Rn×n where D is the degree
matrix, which is a diagonal matrix whose diagonal entries are
expressed as Dii =

∑
j Wij . The normalized graph Laplacian

is expressed as Ln = D−1/2(D−W )D−1/2. The graph signal
(F : V → R) is a function that takes real value at each vertex
of G. The variation of this signal over the underlying graph
structure is defined by Graph Total Variation (GTV), expressed
as [11]:

FTLF =
1

2

n∑
i,j=1

Wij(F (i)− F (j))2 (4)

where F (i), F (j) denotes the labels at ith and jth vertices of
the graph, respectively.

Most of the applications in GSP involve minimizing the
GTV to ascertain that the graph signal is in agreement with the
underlying graph structure [23]. Thereby ensuring a smooth
transition of the signal over the graph. This term has been
popularly used for label propagation, where data form the
graph structure and labels are considered as the graph signal. If
the data residing at the two vertices are similar, minimizing the
GTV term enables the labels at those vertices to be similar as
well. Using these concepts, the details of the proposed method
for UDA are presented in the subsequent section.

III. PROPOSED GA-UDA METHOD

The flow diagram of the proposed GA-UDA method is
presented in Fig. 1. Here, the two projection matrices Ps and
Pt are learned from the source and target domain data Xs and
Xt, respectively, by minimizing the weighted CMMD loss.
Then, the projected data from both the domains, represented
as Xsp = PT

s Xs ∈ Rk×ns and Xtp = PT
t Xt ∈ Rk×nt

are utilized to construct a joint graph (G) of n = ns + nt

samples by augmenting Xsp and Xtp (Xp = [Xsp;Xtp]) using
the Gaussian kernel in (3). The probabilistic target domain
labels Ft are estimated through label propagation over G. The
optimization formulations for learning Ps, Pt in the first stage,
and Ft in the second stage are given below.

The projection matrices Ps and Pt are initialized using
Principal Component Analysis (PCA) over Xs and Xt, re-

spectively. Taking P = [Ps, Pt], the projections Ps and Pt are
learned by minimizing the following loss [15]:

P = min
PTSP=Ik

∥PT
s XsȲsN̄s−PT

t XtF̄tN̄t∥2F +α∥Ps−Pt∥2,1

= min
PTSP=Ik

tr(PTTP ) + αtr(PTMP ) (5)

where Ȳs = [1ns
, Ys], F̄t = [1nt

, Ft], N̄s = diag(1/ns, Ns)
and N̄t = diag(1/nt, Nt),

S =
[
XsHsX

T
s , 0

0, XtHtX
T
t

]
, M =

[
M, −M
−M, M

]
,

T=

[
XsȲsN̄sN̄sȲs

T
XT

s , XsȲsN̄sN̄tF̄t
T
XT

t

XtF̄tN̄tN̄sȲs
T
XT

s , XtF̄tN̄tN̄tF̄t
T
XT

t

]
.

Here, Hs and Ht denote the centering matrices expressed
as Ins

− 1
ns
Ins and Int − 1

nt
Int respectively [20], where

Ins and Int are all one matrices of size ns and nt.
M ∈ Rm×m is a diagonal matrix whose ith diagonal entry
Mii = 1/||Gi||2 if Gi ̸= 0, otherwise Mii = 0. Gi is the
ith row vector of Ps − Pt. While the first term in (5) is
similar to (2), the second term is added to constrain the
learned source and target projections to be similar with the
help of hyperparameter α [24]. Here, ∥.∥2,1 stands for matrix
l2,1 norm. The optimization formulation in (5) is solved by
formulating it as a generalized Eigen-decomposition problem:
(T + αM)γ = βSγ [15]. Here, the eigenvectors (γi) are
corresponding to minimum eigen values (β). We update
subspace projections as P = [γ0, ...., γp−1].

The pseudo labels Ft of the target domain data are updated
through label propagation over the graph by minimizing the
graph total variation in (4). Considering the augmented label
matrix F = [Fs;Ft] ∈ Rn×C , where Fs = Ys, Ft is computed
as:

min
F

tr(FTLnF ) = min
F

tr(FT

[
Lss, Lst

Lts, Ltt

]
F ), s.t. F ≥ 0

(6)
where Ln is the normalized graph Laplacian for the graph
G obtained using the augmented projected data Xp from the
two domains using (3). Since Ln is symmetric, Lst = LT

ts,
solving for (6), results in the following closed form update
Ft = −L−1

tt LtsFs [25]. Once Ft is computed, Nt is also
updated.

We alternately solve for the two stages, iteratively till
convergence is met, which is achieved when the loss in (6)

1735



TABLE I
CLASSIFICATION RESULTS FOR (CWRU → Paderborn)

Method Acc P R F1

JMMD 53.86 42.29 53.86 45.3
MK-MMD 36.25 35.57 36.25 33.42

CORAL 45.34 34.91 45.34 35.98
DANN 44.32 33.55 44.32 36.9
CDAN 44.66 31.3 44.66 34.92
GAKT 71.88 84.78 71.88 65.54

GA-UDA (σ = 5, α = 2) 90.9 92.93 90.9 90.67

TABLE II
CLASSIFICATION RESULTS FOR (Paderborn → CWRU )

Method Acc P R F1

JMMD 76.93 76.56 76.93 73.67
MK-MMD 82.73 88.22 82.73 81.74

CORAL 54.66 41.63 54.66 46.21
DANN 71.02 78.7 71.02 67.07
CDAN 80.68 75.11 80.68 76.12
GAKT 66.5 49.85 66.5 55.38

GA-UDA (σ = 4, α = 2) 93.29 94.73 93.29 93.1

goes below an empirically computed threshold. Subsequently,
the class label corresponding to the highest probability in the
target predictions Ft, are considered as the final target labels
Yt.

IV. EXPERIMENTAL STUDY

This section briefly describes the bearing fault datasets and
the benchmark methods used to analyze the performance of
the proposed method. Subsequently, details of the experimental
study and results are discussed.
A. Data Description

1) CWRU Dataset: This bearing dataset is collected by
Case Western Reserve University (CWRU) [18]. It contains
vibration data captured from the drive and fan end of the
machine at a sampling frequency of 12 kHz. It has data for
four different loading conditions (0, 1, 2, and 3 Horse Power
(Hp)) with rotating speeds of 1797, 1772, 1750, and 1730 rpm,
respectively. The data has four classes: Normal, Inner-race
Fault (IF), Outer-race Fault (OF), and Bearing-race Fault (BF).
Here, faults of different sizes (0.007, 0.014, 0.021 inches) are
induced using electro-discharge machining (EDM).

2) Paderborn Dataset: This bearing dataset is collected
from Paderborn University [19]. It contains vibration and
stator current signals collected from a test rig consisting of
a drive motor, a torque measurement shaft, the test modules,
and a load motor. Data for both real and artificially damaged
bearings are available with a sampling frequency of 64 kHz for
two rotating speeds (900 and 1500 rpm) and loading torques
(0.7 and 0.1 Nm). The data has three classes: Normal, Inner-
race Fault (IF), and Outer-race Fault (OF). We have used only
the vibration data in our analysis with faults introduced using
EDM.

B. Benchmark Methods

The proposed method is compared against five state-of-
the-art UDA methods for bearing fault diagnosis and the

Graph based DA (GAKT) [15] method for performance
evaluation. The UDA methods for bearing fault diagnosis
include mapping-based methods like Joint Maximum Mean
Discrepancy (JMMD), Multi Kernels Maximum Mean Dis-
crepancy (MK-MMD), CORrelation ALignment (CORAL),
and adversarial learning based methods like Domain Ad-
versarial Neural Network (DANN) and Conditional Domain
Adversarial Network (CDAN). They have been successfully
used for adaptation between different working conditions of
the same machine. In this work, they are evaluated for the
difficult scenario of adaptation between physically different but
related machines for bearing fault diagnosis. These methods
are implemented following the formulation given in [26]
that considers the same deep CNN backbone and bottleneck
architecture for all the methods.

C. Experiments and Results

This work considers a challenging adaptation scenario
where the source and target data belong to physically different
but related machines. Here, adaptation is considered between
CWRU and Paderborn datasets for bearing fault detection
and classification. Note that the bearing specifications, sam-
pling frequency, and working conditions are different for
both datasets, making it a challenging adaptation scenario.
CWRU data with 0 Hp motor torque and 0.007 inch fault
size, collected from the drive end, and Paderborn data with
900 rpm and 0.7 loading torque have been utilized for our
experimentation. The Paderborn dataset is downsampled to 12
kHz to match the sampling frequency of CWRU dataset. The
raw data is pre-processed by taking a sliding window of 1024
length, which results in 351 samples for each dataset. Five
relevant time domain features, namely RMS, variance, data
peak, kurtosis, and peak to peak are extracted from the raw
data. They are well-studied features for bearing fault diagnosis
that carry class discriminative information [27]. For a fair
comparison, these features are fed as input to all the methods,
and a three class classification problem is considered: Normal,
IF, and OF.

The performance for all the methods is assessed using Ac-
curacy (Acc), Precision (P), Recall (R), and F1 score (F1). To
simulate a data limited scenario, experimentation is carried out
considering 50 % train-test split. The average results obtained
using five randomly generated train-test sets are summarized
in the tables, with the best performing method highlighted
in bold. Table I and II provide the classification results for
CWRU → Paderborn and Paderborn → CWRU, respectively,
where S → T denotes adaptation from source to the target
domain. Note the optimal value of the hyperparameters σ and
α for GA-UDA method are obtained using grid search and are
mentioned in the tables.

For the case of CWRU → Paderborn, Table I shows
that the mapping and adversarial learning based DA methods
do not perform well for limited data scenarios. Even with
domain-specific features as input, they fail to learn discrim-
inative representations from the data. On the other hand,
for the Paderborn → CWRU case, the performance of
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these methods is comparatively better. However, for both
cases, the proposed GA-UDA performs better than all the
other methods. From both Table I and II, we can observe
that GA-UDA significantly improves over the GAKT method
with ≈ 19 % and 27 % increase in accuracy, respectively.
Note the distribution shift between the sensor data of the
two domains is significant for the challenging adaptation
scenario considered here. In the GAKT method, since the
graph is constructed using raw sensor data from both domains,
large domain discrepancy results in two disjoint sub-graphs
corresponding to the source and target data, which affects
the label propagation leading to poor performance. Unlike
the static graph in GAKT, the graph in GA-UDA is updated
iteratively using the transformed features learned through the
optimization formulation till convergence is met. This allows
the proposed method to effectively handle the distribution shift
between the two domains, thereby providing more reliable
adaptation results.

V. CONCLUSION

This paper presents a novel formulation employing Class-
wise Maximum Mean Discrepancy and label propagation on
the graph for unsupervised domain adaptation. The method
has been evaluated for bearing fault diagnosis using publicly
available datasets for domain adaptation. The proposed method
provides superior performance compared to the benchmark
methods for the challenging data-limited scenario of adapta-
tion between different but related machines. The experimental
results demonstrate the applicability of the proposed method
for domain adaptation.

It is important to note that this method is generic and can
be applied to other application domains. In future, we will
focus on establishing the versatility of the proposition by
experimenting with data sets of different domains.
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