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ABSTRACT

This paper investigates the recovery of a spectrally sparse
signal (SSS) from partially observed entries, with particular
emphasis on computational efficiency for large scaled problems.
We formulate the SSS recovery as a nonconvex low-rank Hankel
matrix recovery problem. A projected proximal gradient method
has been developed. It is an iterative process where each iteration
involves two steps. The first subspace projection step finds the
optimal solution in a low-rank and Hankel matrix space for
given column and row sub-spaces. The second step optimizes
all involved variables including the column and row sub-spaces
by using a proximal gradient process. In both steps, sub-problems
are formulated so that both the low-rank and the Hankel structures
are fully exploited for computational efficiency. The combination
of these two steps substantially improves the convergence rate.
Numerical simulations demonstrate a significant improvement
in efficiency compared with the benchmark algorithms.

Index Terms— Hankel matrix, Low-rank matrix completion,
Nonconvex optimization, Spectrally sparse signal

1. INTRODUCTION

Spectrally sparse signals (SSS) arise in various applications,
including medical imaging [1], fluorescence microsopy [2] and
radar imaging [3]. In many practical situations, only parts of the
signals can be measured. Hence it is essential to recover SSS
from incomplete time-domain samples.

Various recovery algorithms have been developed. One
approach is to discretize the frequencies and apply sparse recovery
algorithms [4–6]. However, the frequency leakage effect is
unavoidable when the ground-truth frequencies are off-the-grid.
The gridless approach avoids the issues of frequency discretization.
The crux is to cast SSS recovery as a low-rank matrix recovery
problem. After solving the low-rank matrix recovery problem,
the frequencies of SSS can be extracted using methods such as
MUSIC [7], Prony’s method [8] or a matrix pencil approach [9].

In the gridless approach, scores of convex techniques have
been developed based on the concept of the atomic norm.
In [10, 11], the low-rank matrix arising in SSS recovery has a
Toeplitz sub-matrix. Later, Hankel matrix based recovery became
more popular [12–14] due to its computational efficiency, as the

involved matrix as a whole was Hankel structured and supports
efficient decomposition. The convex formulation of the low-rank
matrix recovery can be solved using semi-definite programming
(SDP) [10–14] or alternating direction method of multipliers
(ADMM) [15]. In an alternative approach, the Burer-Monteiro
heuristic [16,17] is applied where low-rank matrices are presented
by a bilinear outer product so as to avoid explicit matrix decompo-
sition. Performance guarantees of convex optimization techniques
have been studied in depth [10–12,14]. It is noteworthy that the
worst-case analysis in [14] shows that convex optimization can
fail even when a single element is missing.

Recently, many nonconvex methods have been developed for
SSS recovery [18–23]. All these methods assumed prior knowl-
edge of the rank of the involved Hankel matrix and conducted
optimization on the space of low-rank Hankel matrices. Cadzow’s
algorithm [18,23] performed alternating projections between the
set of Hankel matrices and the set of low-rank matrices. This
idea was taken further by adding a projection to the direct sum
of the column and row spaces [21,22]. An alternative approach
is similar to the Burer-Monteiro heuristic for convex optimization.
Writing a low-rank matrix/tensor as an outer-product of low-rank
matrices, optimization was performed directly on the component
matrices to avoid explicit matrix decomposition [19,20].

In this paper, we develop a projected proximal gradient (PPG)
method for SSS recovery. PPG is an iterative method based on a
nonconvex formulation involving the low-rank constraint directly.
Each iteration of PPG involves two steps. In the first step, PPG
fixes the column and row sub-spaces and performs a projection
to a low-rank and Hankel sub-space. The second step employs
a proximal gradient process to update all the variables including
the column and row sub-spaces. In both steps, the corresponding
optimization problems are carefully formulated so that the
low-rank and Hankel structures are fully exploited to reduce
computational complexity. The combination of these two steps
substantially improves the convergence rate. Numerical simula-
tions demonstrate the significant efficiency improvement of PPG
in solving SSS recovery problems compared to the benchmarks.

The rest of this paper is structured as follows. Sect. 2 presents
our optimization formulation for SSS recovery. The PPG method
is developed and detailed in Sect. 3. Numerical results are
presented in Sect. 4 to demonstrate PPG’s efficiency. Finally,
Sect. 5 concludes this paper.
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2. THE OPTIMIZATION FORMULATION

An SSS of order r is a signal composed of complex sinusoids:

x=

r∑
k=1

bka(fk;n)∈Cn (1)

where bk ∈ C are complex amplitudes, a(fk; n) =
[1, ei2πfk , ... , ei2π(n−1)fk ]T ∈ Cn is often referred to as
steering vectors in signal processing, fk denotes the frequencies,
and it is typically assumed r≪ n. The problem under consid-
eration is to recover an SSS x from its partial observations s
(unobserved entries set to zero), i.e.,

find x s.t. PΩx=s, (2)

where s is the partially observed signal, Ω⊂{1,...,n} denotes the
set of indices of the observed entries, andPΩ is the corresponding
projection operator. In this paper, we consider the problem where
r<m= |Ω|<n. The sampling rate is denoted by p=m/n<1.

Remark 1. When X is a multidimensional SSS, that is,
X=

∑
kbka(f1,k;n1)◦···◦a(fd,k;nd)∈Cn1×···×nd where the

symbol ◦ denotes the outer product, a multilevel Hankel matrix
is needed. The proposed method can be easily extended for this
case. Due to space constraints, we focus on one-dimensional
SSS (1) in Sections 2 and 3 for technical development but present
simulation results including multi-dimensional SSS in Section 4.

We consider a standard formulation of SSS recovery as a low-
rank Hankel matrix recovery problem [12,17,19–21]. A Hankel
matrix is a matrix with identical elements on ascending skew
diagonals. Let H denote the linear operator mapping a vector
x∈Cn to a Hankel matrixH(x)∈Cn1×n2 with n1+n2=n+1:

Hx=


x1 x2 ... xn2

x2 x3 ... xn2+1

...
...

xn1
xn1+1 ... xn

∈Cn1×n2. (3)

It is typically to choose n1 ≈ n2 ≈ n/2 such that the Hankel
matrix is close to a square matrix [12, 20]. The Hankel matrix
H(x) admits the Vandermonde decomposition:

H(x)=
r∑

k=1

bka(fk;n1)a(fk;n2)
T, (4)

It is clear that rank(H(x)) ≤ r [9]. Hence, the SSS recovery
problem can be formulated as a constrained nonconvex problem:1

min
H,x

δ(rank(H)≤r)+1

2
∥s−PΩx∥2 s.t. H=Hx, (5)

1We choose the data fidelity term ∥s − PΩx∥2 rather than
∥(H∗H)

1
2 (s − PΩ(x))∥2F in [20, Eq.(5)]. The latter may lead to biased

solutions by repeatedly counting some entries [22].

where δ(·) is the characteristic function taking values zero and
infinity. Due to the difficulty to solve a constrained nonconvex op-
timization problem, the following relaxation is used in this paper:

min
H,x

δ(rank(H)≤r)+1

2
∥s−PΩx∥2+

β

2
∥H−Hx∥2F+

α

2
∥x∥2,

(6)
where β>0 is the Hankel enforcement parameter and its value
should be large to enforce a low-rank Hankel solution; α is a
small positive scalar for regularization.

3. A PROJECTED PROXIMAL GRADIENT METHOD

A projected proximal gradient (PPG) method is proposed in this
section. The PPG is an iterative process composed of two steps:
the first subspace projection optimizes all variables except some
low-rank column and row subspaces, and the second is to update
the column and row subspaces together with all other variables
via a proximal gradient (PG). Each step is carefully designed to
use low-rank and Hankel structures for computational efficiency.

3.1. The Subspace Projection Step

The subspace projection step is to solve (6) with fixed low-rank
column and row subspaces of H. Specifically, a rank-r matrix
H admits a decomposition H=UΣV H where U∈Cn1×r and
V ∈Cn2×r contain orthonormal columns. By fixing U and V ,
the optimization problem (6) becomes

min
H with fixed U&V ,x

δ(rank(H)≤r)+1

2
∥s−PΩx∥2

+
β

2
∥H−Hx∥2F+

α

2
∥x∥2

=min
Σ,x

1

2
∥s−PΩx∥2+

β

2
∥UΣV H−Hx∥2F+

α

2
∥x∥2, (7)

which is a least-squares problem of variables Σ2 and x, and
admits a closed-form solution. As the dimension of the variable
in (7) is n + r2, the complexity of solving (7) is in general
O((n + r2)3). Our preliminary simulations show that this
complexity can be too much for large n.

Our novelty in this step is to recast (7) into (8), which brings
down the complexity from O((n+r2)3) to O(r3nlogn+r4n).
Specifically, reformulate (7) as

min
Σ

h(Σ)=min
Σ

min
x

1

2
∥s−PΩx∥2+

β

2
∥UΣV H−Hx∥2F

+
α

2
∥x∥2. (8)

Here, the objective function h(Σ) involves only one variable Σ
but the evaluation of h(Σ) involves another optimization of x.
The optimal solution to (8) is given below.

2Note that Σ is not assumed to be diagonal
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Proposition 1. Let PU,V (Σ)=UΣV H, P∗
U,V (H)=UHHV ,

H∗ be the adjoint operator of H. Then the optimal solution to
(8) and (7) is given by :

x⋆=(αI+P∗
ΩPΩ+βH∗H)−1︸ ︷︷ ︸

L

(P∗
Ωs+βH∗PU,V Σ⋆), (9)

Σ⋆=
(
I−βP∗

U,VHLH∗PU,V

)−1(P∗
U,VHLP∗

Ωs
)
. (10)

Proof Sketch. For any given Σ, the corresponding optimal x
is obtained by solving the inner least squares problem in (8).
Substitute it back to (8) and set the gradient of h(Σ) to zero. Eq.
(10) can be reached after some elementary algebra.

Computation of Σ⋆ is efficient. Note that H∗H is a linear
operator that scales each entry of an n-dimensional vector by
wa, where wa is the number of elements in the ath skew-diagonal
of a n1×n2 matrix. Additionally, P∗

ΩPΩ =PΩ, which can be
represented by diagonal matrices with 1 on the observed entries
and 0 for the others. Therefore, the operator L exists and can be
represented by diagonal matrices with positive entries. Similarly,
because of the positive constant α,

(
I−βP∗

U,VHLH∗PU,V

)
is positive semi-definite. Using the low-rank and the Hankel struc-
ture, the complexity of the evaluation of P∗

U,VH andH∗PU,V is
O(rnlogn+r2n) via the Fast Fourier Transform [24]. Note that
the dimension of Σ is r2. The overall complexity of subspace
projection is O(r3n logn+ r4n) via conjugate gradient (CG)
method [25].

3.2. The Proximal Gradient (PG) Step

In the second step of PPG iterations, the PG with line search is
adopted to update both H and x, and hence the column and row
sub-spaces of H. One novelty in this step is to reformulate the
objective function to (13), which supports fast convergence.

To proceed, the standard PG method is introduced in
Algorithm 1. PG solves unconstrained optimization problems of
the form

min
x

F(x):=min
x

f(x)+g(x) (11)

where f(·) is Lipschitz differentiable3 and g(·) is proximable, i.e.,

proxγg(v)=arg min
H

(
g(x)+

1

2γ
∥x−v∥2

)
(12)

is easy to solve. Note that the step-size 0<γ ≤ 1/Lf is small
when the Lipschitz constant Lf is large.

Algorithm 1 The standard PG method [15]
Set x0 and 0<γ≤ 1

Lf
(Lf : the Lipschitz constant of∇f).

for k=0,1... do
Update xk+1←proxγg(xk−γ∇f(xk)).

A naive application of the PG method to solve (6) would
define f(H,x) = 1

2∥s−PΩx∥
2 + β

2∥H −Hx∥
2
F + α

2 ∥x∥
2.

3the gradient ∇f is Lipschitz continuous and the corresponding Lipschitz
constant is denoted by Lf

The Lipschitz constant of∇f is 1+βmin(n1,n2)+α=O(βn)
where n1 and n2 come from the Hankel mapping (3).

We take a different approach where the objective function
involves only a single variable H:

F(H):=f(H)+g(H), where (13)

f(H):=min
x

1

2
∥s−PΩx∥2+

β

2
∥H−Hx∥2F+

α

2
∥x∥2, (14)

g(H):=δ(rank(H)≤r). (15)

The minimizer of the inner optimization in (14) is given by

x⋆=L(P∗
Ωs+βH∗H), where L=(αI+P∗

ΩPΩ+βH∗H)−1.
(16)

An important feature of the formulation (13) is that the
Lipschitz constant of ∇f(H) is upper bounded by β which is
dimension independent, as shown in Proposition 2 below. It
allows the corresponding proximal gradient method to take a
larger step-size and converge faster for large scale problems.

Proposition 2. Denote the Lipschitz constant of∇f(H) by Lf .
It holds that Lf≤β.

Proof Sketch. Plug (16) into (14). It holds that

∇f(H)=−βHLP∗
Ωs−β2HLH∗H+βH. (17)

The Hessian matrix of f(H) is then β(I−βHLH∗). As

0≤∥βHLH∗∥=∥βH(αI+P∗
ΩPΩ+βH∗H)−1H∗∥<1,

(18)

we can conclude that Lf≤β.4

Our proximal gradient step is detailed in Algorithm 2. It uses
1/β− η as the minimum value (initial value) for the step-size
and employs a back-tracking process to allow an even larger
step-size. The small positive constant η is added to ensure
sufficient decrease for nonconvex proximal mapping.

Algorithm 2 Line search for step size
Set constants c∈(0,1), α= 1

1000 ,η= 1
1000β , and γ← 1

β−η.
lk←arg mini{F(Hi

k):i=0,1,···} ;
where, Hi

k←prox γ

ci
g

(
H0

k−
γ
ci∇f(H

0
k)
)

;

Output: Hk←Hlk
k ;

Our PG step also enjoys efficient computations. In our PG
step, the key computations involve the evaluations of∇f(H) in
(17), and the proximal operator

prox γ

ci
g

(
Hk−

γ

ci
∇f(Hk)

)
=Tr

(
Hk−

γ

ci
∇f(Hk)

)
, (19)

where Tr(·) is the truncated SVD operator [26]. By applying
the Lanczos method for truncated SVD [25], it can be shown the
computation complexity of the PG step is O(r2n+rnlogn). The
detailed computation procedure and complexity analysis will be
presented in the journal version of this paper but are omitted here
due to space constraints.

4The operator norm is used in (18). It is the maximum eigenvalue of the
corresponding matrix representation.
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3.3. PPG: Convergence

The overall PPG algorithm is summarized in Algorithm
3. As analyzed above, the complexity of each iteration is
O(r3nlogn+r4n).

Algorithm 3 PPG for spectrally sparse signal reconstruction
Input: s, β. Set γ← 1

β−η, H0←TrHs
while not converged do

Compute Hk,12
← UkΣ

⋆
kV

H
k by subspace projection

Hk ;
Compute H0

k+1←Tr
(
Hk,12

−γ∇f(Hk,12
)
)

;

Line search for H0
k+1 in Algorithm 2 to get Hk+1 ;

Output: {x†←L(P∗
Ωs+βH∗H†)}

The PPG method is guaranteed to converge. It is straightfor-
ward to see that the objective function (6) decreases after each step
of the iterations. Note that the step-size of our proximal gradient
step is at least the constant 1/β− η. Moreover, Proposition 2
illustrated β≥Lf , which supports a sufficient decrease as shown
in [27]. Therefore, the convergence of the developed PPG method
is guaranteed.

4. SIMULATIONS

In this section, numerical simulations are performed to demon-
strate the fast convergence rate and the overall computational
efficiency (in wall-clock time) of the PPG method. In all the tests,
the ground-truth SSS and their partial observations are generated
as follows. The frequencies fk of SSS are randomly generated
from the uniform distribution on [0,1). The complex amplitudes
bk = |bk|ejϕk where the modulus |bk| = 1 + 100.5c and c is
randomly sampled from the uniform distribution on [0,1], and the
phase ϕk is randomly generated from the uniform distribution on
[0,2π). For a given sample size m=pn, the index set of observed
entries Ω is randomly taken from the uniform distribution on

(
[n]
m

)
.

In the tests, our PPG method is compared against the benchmark
nonconvex algorithms including FIHT [21], PGD [20], and the
naive PG algorithm [15] (without the subspace projection step),
and two variations of the proposed PPG method, i.e., LPG (PPG
without the subspace projection step) and PGG (PPG without the
back-tracking line search).

Figure 1 compares the convergence rates of algorithms. The
recovery root mean square error (RMSE) is depicted as a function
of the number of iterations. The results demonstrate that the
proposed PPG converges the fastest. Furthermore, by comparing
the proposed PPG against PG, LPG, and PGG, the benefits of
various steps in the PPG become explicit.

Table 1 compares both the convergence rate and the
wall-clock time of the algorithms in some challenging scenarios:
the sampling ratio p is low, the Hankel enforcement parameter
β>0 is medium or large, and the SSS x is a multi-dimensional
array which leads to a large multilevel Hankel block matrix [24].
The results show that the convergence rate of our PPG remains

Fig. 1. Convergence rate comparison: n = 400, (n1, n2) =
(200,201), p=0.3, and r=15.
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the fastest. Although the complexity of each iteration goes up
for the purpose of fast convergence, the computational efficiency
(wall-clock time) of the overall algorithm is still the best compared
to the benchmark algorithms in the literature. It is interesting to
observe that in the case FIHT diverges.

Table 1. Convergence rate and wall-clock time comparisons: the
SSS X ∈C16×16×16 is a multi-dimensional array, the resulting
H∈C729×512 is a level-3 block Hankel matrix, p=0.05, r=5,
and the stopping criterion is chosen as (∥xk+1−xk∥/∥xk∥)≤
10−3. FIHT is not shown in the table as it does not converge.

β 1 10
Criterion RMSE Iter Time(s) RMSE Iter Time(s)
PGD [20] 9.5e-2 166 8.5e-1 5.6e-1 710 3.8
PG [15] 9.5e-1 108 6.7e-1 9.5e-1 124 7.3e-1

LPG 6.4e-2 265 8.1 9.4e-1 37 2.2
PGG 2.9e-1 10 3.1e-1 3.0e-1 11 3.8e-1
PPG 2.6e-1 8 3.6e-1 2.8e-1 8 3.9e-1

5. CONCLUSIONS

In this paper, a projected proximal gradient (PPG) method is
developed for spectrally sparse signal recovery. This method
is based on a nonconvex optimization formulation involving
a low-rank Hankel matrix. The key novelty is an iterative
process involving two steps per iteration: the first is with respect
to all variables except the column and row sub-spaces of the
Hankel matrix; and the second is to update the column and
row sub-spaces together with all other variables. Each step
is carefully designed by employing the underlying structures.
The PPG method is guaranteed to converge and is numerically
demonstrated to be faster than several benchmark algorithms,
making it more suitable for large scale problems in practice.
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