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Abstract—We introduce a new methodology dubbed “safe
peeling” to accelerate the resolution of `0-regularized least-
squares problems via a Branch-and-Bound (BnB) algorithm. Our
procedure enables to tighten the convex relaxation considered at
each node of the BnB decision tree and therefore potentially
allows for more aggressive pruning. Numerical simulations show
that our proposed methodology leads to significant gains in terms
of number of nodes explored and overall solving time.

Index Terms—Sparse model, `0 regularization, Branch-and-
Bound algorithm.

I. INTRODUCTION

This paper focuses on the resolution of the so-called “`0-
regularized least-squares” problem given by

p? = min
x∈Rn

P(x) , 1
2‖y −Ax‖22 + λ‖x‖0 (1-P)

where y ∈ Rm and A ∈ Rm×n are input data, λ > 0 is a
regularization parameter and ‖·‖0 denotes the `0-pseudonorm
which counts the number of non-zero elements in its argument.

Solving (1-P) is of paramount interest in many scientific
fields such as statistics, machine learning or inverse prob-
lems [1–3]. Unfortunately, this problem also turns out to be
NP-hard [4, Th. 1]. Hence, the last decades have seen a
flurry of contributions proposing tractable procedures able to
recover approximate solutions of (1-P). Canonical examples
include greedy algorithms or methodologies based on con-
vex relaxations, see [5, Ch. 3]. Although these procedures
successfully recover the actual solutions of (1-P) in “easy”
setups, they usually fall short for more challenging instances
of the problem. This observation, combined with some recent
advances in integer optimization and hardware performance,
has revived the interest in methods solving (1-P) exactly.
A standard approach is to use a Branch-and-Bound (BnB)
algorithm that solves (1-P), see [6–11].

In this paper, we propose a new strategy, dubbed “safe
peeling”, to accelerate the exact resolution of (1-P). In a
nutshell, our contribution is a computationally simple test
applied at each node of the BnB decision tree to identify some
intervals of Rn which cannot contain a solution of (1-P). This
information allows to construct tighter convex relaxations and
more aggressive pruning of the nodes of the decision tree. Our
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numerical experiments show that the proposed method leads
to a significant reduction of the solving time as compared to
state-of-the-art concurrent methods. The name “safe peeling”
comes from the fact that the proposed method enables to
reduce (or in more figurative terms, “to peel”) the feasible
set of the problem at each node of the decision tree while
safely preserving the correctness of the BnB procedure.

The rest of the paper is organized as follows. Sec. III
describes the main ingredients of BnB methods. Our peeling
strategy is presented in Sec. IV and its performance is illus-
trated in Sec. V. All the proofs are postponed to the technical
report accompanying this paper [12].

II. NOTATIONS

We use the following notations. 0 and 1 denote the all-
zero and all-one vectors. The i-th column of a matrix A is
denoted ai and the i-th entry of a vector x is denoted xi. The
superscript T refers to transposition. Any vectorial relation
has to be understood component-wise, e.g., x ∈ [l,u] means
xi ∈ [li, ui],∀i. Moreover, η(·) denotes the indicator function
which equals to 0 if the condition in argument is fulfilled and
to +∞ otherwise, [x]+ = max(x, 0) refers to the positive-part
function and | · | denotes the cardinality of a set. Finally, J1, nK
with n ∈ N∗ is a short-hand notation for the set {1, . . . , n}.

III. PRINCIPLES OF BNB METHODS

In this section, we recall the main principles of BnB proce-
dures. Due to space limitation, we only review the elements of
interest to introduce the proposed peeling method. We refer the
reader to [13, Ch. 7] for an in-depth treatment of the subject.

A. Pruning

The crux of BnB methods consists in identifying and dis-
carding some subsets of Rn which do not contain a minimizer
of (1-P). To do so, one constructs a decision tree in which
each node corresponds to a particular subset of Rn. In our
context, a tree node is identified by two disjoint subsets of
J1, nK, say ν0 and ν1. The goal at node ν , (ν0, ν1) is to
detect whether a solution of (1-P) can be attained within

X ν , {x ∈ Rn : xν0 = 0, xν1 6= 0}, (2)

where xνk denotes the restriction of x to its elements in νk.
In particular, let X ? be the non-empty set of minimizers of
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(1-P). Then, if some upper bound p̄ on the optimal value p?

is known and if we let

pν , inf
x∈Rn

Pν(x) (3)

with Pν(x) , P(x) + η(x ∈ X ν), we obtain the implication

pν > p̄ =⇒ X ν ∩ X ? = ∅. (4)

In words, if the left-hand side of (4) is satisfied, X ν does not
contain any solution of (1-P) and can therefore be discarded
from the search space of the optimization problem. This
operation is usually referred to as “pruning”.

B. Bounding and relaxing

Making a pruning decision at node ν requires the knowledge
of p̄ and pν . On the one hand, finding p̄ is an easy task
since the value of the objective function in (1-P) at any
feasible point constitutes an upper bound on p?. On the other
hand, evaluating pν is NP-hard. This issue can nevertheless
be circumvented by finding a tractable lower bound rν on pν

and relaxing (4) as

rν > p̄ =⇒ X ν ∩ X ? = ∅. (5)

One ubiquitous approach in the literature [7, 9, 14] to find
such a lower bound consists in:

i) Adding an extra term “η(x ∈ [l,u])” to the cost function
of (1-P), for some well-chosen bounds l ∈ Rn− and u ∈
Rn+.1 In particular, the new constraint “x ∈ [l,u]” must
lead to a problem fully equivalent to (1-P), that is

∀x? ∈ X ? : x? ∈ [l,u]. (6)

ii) Exploiting the convex relaxation of the function ‖·‖0 on
the bounded set X ν ∩ [l,u], given by

‖x‖0 ≥ |ν1|+
∑
i∈ν•

[xi]+
ui
− [−xi]+

li
, (7)

with ν• , J1, nK\(ν0∪ν1) and the convention “0/0 = 0”.
On the one hand, item i) implies that the pruning test (4)
involves the following quantity (rather than pν):

pν(l,u) = inf
x∈Rn

Pν(x; l,u) (8-Pν)

where Pν(x; l,u) , Pν(x)+η(x ∈ [l,u]). On the other hand,
a lower bound rν(l,u) on pν(l,u) can be obtained by using
(7) and solving

rν(l,u) = min
x∈Rn

Rν(x; l,u) (9-Rν)

where

Rν(x; l,u) , 1
2‖y −Ax‖22 + λ

∑
i∈ν•

[xi]+
ui
− [−xi]+

li

+ λ|ν1|+ η(xν0 = 0) + η(x ∈ [l,u]).

1This additional constraint usually takes the form “−M ≤ xi ≤ M, ∀i”
with M > 0 and is known as “Big-M” constraint, see [7, Sec. 3]

We note that (9-Rν) is a convex problem and can be solved
efficiently to good accuracy via numerous polynomial-time
numerical procedures, see e.g., [15, Ch. 10].

In practice, the choice of l and u must respect two con-
flicting imperatives. First, the new constraint “x ∈ [l,u]”
should not modify the solution of our target problem (1-P) and
condition (6) must therefore be verified. Since X ? is obviously
not accessible beforehand, this suggests that the entries of l
and u should be chosen “large-enough” in absolute values.2

Second, the tightness of rν(l,u) with respect to pν(l,u)
degrades with the spread of the set [l,u].3 In particular, the
right-hand side of (7) tends to |ν1| when l � x and x � u.
Therefore, setting the entries of l and u with too large absolute
values is likely to degrade the effectiveness of the relaxed
pruning decision (5).

In the next section, we propose a solution to address this
problem by deriving a methodology which locally tightens the
constraint x ∈ [l,u] at each node of the decision tree while
preserving the correctness of the BnB procedure.

IV. PEELING

In this section, we introduce our proposed peeling proce-
dure. As an initial assumption, we suppose that some interval
[l,u] verifying condition (6) is known. This assumption will
be relaxed later on in Sec. IV-C.

Our goal is to find a new interval [l′,u′] such that

∀x ∈ [l,u] \ [l′,u′] : Pν(x; l,u) > p̄ (10a)
[l′,u′] ⊆ [l,u]. (10b)

These requirements imply that the pruning decision (4) made
at node ν remains unchanged when replacing constraint “x ∈
[l,u]” by “x ∈ [l′,u′]” in (8-Pν). More specifically, the
following result holds:

Lemma 1. Assume [l,u] and [l′,u′] verify (10a)-(10b), then

pν(l′,u′) > p̄ ⇐⇒ pν(l,u) > p̄. (11)

A proof of this result is available in [12, App. A]. A
consequence of preserving the pruning decision is that taking
the new constraint “x ∈ [l′,u′]” into account at node ν does
not alter the output of the BnB procedure. In particular, it
still correctly identifies the solutions of (1-P). The second
requirement (10b) implies that rν(l′,u′) can possibly be larger
than rν(l,u) since the lower bound in (7) is tightened by
considering lower absolute values for l and u. Overall, any
choice of [l′,u′] verifying (10a)-(10b) thus keeps unchanged
the output of the BnB procedure while allowing for potentially
more aggressive pruning decisions.

In the rest of this section, we describe a strategy to find
some interval [l′,u′] satisfying (10a)-(10b). Because of the
symmetry of the problem at stake, we only focus on the
construction of the upper bound u′. The identification of a
lower bound l′ can be done along the same lines.

2Some heuristics are commonly used in the literature to select proper values
of the bounds, see [7, Sec. V.B], [11, Sec. 5.1] or [16, Sec. 4].

3This impairment pertains to a large class of mixed-integer problems and
is well known in the literature, see e.g., [17].
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A. Target peeling strategy

Given some index j ∈ ν• and α > 0, we consider the
following perturbed versions of (8-Pν):

pνα(l,u) , inf
x∈Rn

Pν(x; l,u) + η(xj > α). (12)

Problem (12) corresponds to (8-Pν) where xj is additionally
constrained to be strictly greater than α. The following lemma
then trivially follows from the definition of pνα(l,u):

Lemma 2. If α ∈ [0, uj [ and

pνα(l,u) > p̄, (13)

then (10a)-(10b) hold with

u′i =

{
α if i = j

ui otherwise.
(14)

This result thus states that any α ∈ [0, uj [ verifying (13)
enables to construct some u′ automatically fulfilling (10a)-
(10b). Unfortunately, evaluating (13) involves the same com-
putational burden as solving (8-Pν). This problem can never-
theless be circumvented by finding some proper lower bound
on pνα(l,u) as described in the next section.

B. Tractable implementation

Leveraging Fenchel-Rockafellar duality for problem (9-Rν),
it can be shown [12, App. A] that for any w ∈ Rm, the
following lower bound on pνα(l,u) holds:

pνα(l,u) ≥ Dν(w; l,u) + ψj(w; l,u) + α[−aTj w]+, (15)

where

Dν(w; l,u) , 1
2‖y‖

2
2 − 1

2‖y −w‖22 + λ|ν1|

−
∑
i∈ν1

µ0,i(a
T
i w)−

∑
i∈ν•

µλ,i(a
T
i w)

ψj(w; l,u) , µλ,j(a
T
j w)− uj [aTj w]+ + λ

and µρ,i(v) , [uiv − ρ]+ + [liv − ρ]+.
Using this result, condition (13) can be relaxed as

Dν(w; l,u) + ψj(w; l,u) + α[−aTj w]+ > p̄. (16)

Hence, choosing any α ∈ [0, uj [ verifying (16) for some w ∈
Rm defines a new valid constraint via (14), in the sense of
(10a)-(10b). Interestingly, the left-hand side of (16) depends
linearly on α, thus allowing to precisely characterize the range
of possible values satisfying the strict inequality (16). This
leads us to the main result of this section.

Proposition 1. Let w ∈ Rm. If aTj w ≥ 0 and

Dν(w; l,u) + ψj(w; l,u) > p̄, (17)

then u′ defined as in (14) with α = 0 fulfills (10a)-(10b).
Moreover, if aTj w < 0, then u′ defined as in (14) with any
α ∈ [0, uj [ verifying

α > ᾱ ,
p̄−Dν(w; l,u)− ψj(w; l,u)

[−aTj w]+
(18)

fulfills (10a)-(10b).

Our next result shows that Prop. 1 can be applied to all
indices j ∈ J1, nK either sequentially or in parallel, while
preserving the correctness of the BnB procedure:

Lemma 3. Let [l′,u′] and [l′′,u′′] be two intervals satis-
fying (10a)-(10b). Then, the interval [l′,u′] ∩ [l′′,u′′] also
fulfills (10a)-(10b).

A proof is available in [12, App. A]. We note that in
terms of complexity the parallel application of Prop. 1 to
all indices j ∈ J1, nK requires the computation of the inner
products {aTi w}ni=1 and one single evaluation of Dν(w; l,u).
Interestingly, these inner products are already computed in
most numerical procedures solving (9-Rν) and are thus usually
available at no additional cost, see e.g., [11, Sec. 4.3]. The
overhead complexity of applying in parallel our proposed
peeling strategy thus scales as O(n+m).

C. Propagating peeling down the tree

In this section, we emphasize that any interval [l′,u′]
verifying (10a)-(10b) at node ν can be used as a starting point
to apply our peeling procedure at the child nodes of ν. More
specifically, the following result holds:

Lemma 4. Let [l′,u′] be some interval verifying (10a)-(10b)
at node ν and let ν′ be some child node of ν. Assume that
the peeling procedure defined in Prop. 1 is applied at node
ν′ with [l′,u′] as input, rather than [l,u], to generate a new
interval [l′′,u′′]. Then we have

∀x ∈ [l,u] \ [l′′,u′′] : Pν
′
(x; l,u) > p̄ (19a)

[l′′,u′′] ⊆ [l,u]. (19b)

A proof of this result is available in [12, App. A]. In other
words, Lem. 4 states that any peeled interval [l′,u′] computed
at node ν can be used as a starting point to apply a new peeling
step at any child node ν′. This allows to propagate the peeled
interval [l′,u′] down the decision tree to hopefully improve
sequentially the tightness of the convex relaxation (9-Rν).

V. NUMERICAL RESULTS

This section reports an empirical study demonstrating the
effectiveness of the proposed peeling procedure to accelerate
the resolution of (1-P) on a synthetic dataset. We refer
the reader to [8, 18] for an in-depth study of the statistical
properties of the optimizer obtained from this problem.

A. Experimental setup

We consider instances of problem (1-P) with dimensions
(m,n) = (100, 150). For each trial, new realizations of A,y
and λ are generated as follows. Each row of the dictionary A is
drawn from a multivariate normal distribution with zero mean
and covariance matrix K ∈ Rn×n. The (i, j)th entry of K is
defined as Kij = 10−|i−j|, ∀i, j ∈ J1, nK. Each realization of
y is generated in two steps. We first create a 5-sparse vector
x† ∈ Rn with evenly-distributed non-zero components. The
non-zero entries are defined as x†i = sign(ri) + ri where ri
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is an independent realization of a zero-mean Gaussian with
variance σ2. We then set y = Ax† + n for some zero-mean
white Gaussian noise n. The variance of the noise is adjusted
so that the SNR , 10 log10(‖Ax†‖22/‖n‖22) is equal to 15dB.
The parameter λ is calibrated for each instance of (1-P) using
the cross-validation tools of the L0LEARN package [19] with
the default parameters, see [12, Sec. V] for more details.

B. Competing procedures

We consider the following numerical solvers address-
ing (1-P): i) CPLEX [6], a generic mixed-integer problem
solver; ii) L0BNB [10], a standard BnB procedure using a
“breadth-first search” exploration strategy, see [10, Sec. 3.3];
iii) SBNB, a standard BnB procedure using a “depth-first
search” exploration strategy, see [16, Sec. 2.2]; iv) SBNB-
N, corresponding to SBNB enhanced with additional “node-
screening” techniques, see [11]; v) SBNB-P, corresponding to
SBNB enhanced with the peeling strategy presented in this
paper. L0BNB, SBNB, SBNB-N and SBNB-P all use the same
solving procedure for relaxed problem (9-Rν), namely a coor-
dinate descent method [20]. We use the C++ implementation
of CPLEX4 and the Python implementation of L0BNB.5 SBNB,
SBNB-N and SBNB-P are implemented in Julia.6

For SBNB-P, peeling is applied at each iteration of the
numerical procedure solving the relaxed problem (9-Rν). We
use the current iterate, say x(k), to define w , y − Ax(k)

and apply the peeling rules defined in Prop. 1 in parallel, i.e.,
simultaneously for all the components of x. The value of α
satisfying (18), if any, is chosen as α = ᾱ+10−16. The peeled
intervals are propagated through the decision tree as described
in Sec. IV-C.

All the solving procedures are provided with the initial
bounds l = −M1 and u = M1 for some proper value
of M . This corresponds to the standard “Big-M” constraint
commonly considered in the literature [7, 9, 14, 16]. As far
as our random simulation setup is concerned, it can be shown
that (1-P) admits a unique minimizer x? with probability one
and we thus choose M = γ‖x?‖∞ for some γ ≥ 1 in our
simulations. This requires to solve (1-P) once beforehand to
identify x?. This operation is here only done for the sake of
comparing the sensibility of the solving methods to the choice
of γ. More details are given in our companion paper [12,
Sec. V].

C. Computational gains

Fig. 1 presents the performance of the considered solving
procedures. All results are averaged over 50 problem instances.
Experiments were run on one Intel Xeon E5-2660 v3 CPU
clocked at 2.60 GHz with 16 GB of RAM. The left column in
Fig. 1 represents the average solving time of each procedure
as a function of γ (top) and σ (bottom); the right column
illustrates the gain allowed by the proposed method in terms

4https://github.com/jump-dev/CPLEX.jl
5https://github.com/hazimehh/L0Learn
6https://github.com/TheoGuyard/BnbPeeling.jl
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Fig. 1. Left: Solving time as a function of γ (top, σ = 1) and σ (bottom,
γ = 5). Right: gain in terms of solving time (solid) and number of nodes
explored (dashed) with respect to SBNB-N.

of solving time (solid) and number of nodes explored (dashed)
as compared to its best competitor, that is SBNB-N.

We note that SBNB-P leads to the smallest running time
in all the considered setups. Since the latter corresponds to
SBNB where peeling has been added, the spacing between the
red and green curves materializes the gain provided by peeling.
As far as our simulation setup is concerned, we see that the
proposed method enables an acceleration of almost one order
of magnitude with respect to SBNB. It is noticeable that this
acceleration occurs even if γ = 1, that is the Big-M constraint
is perfectly tuned to the problem at hand. This is due to the
fact that peeling can refine individually each component of the
initial bounds l and u at each node of the BnB decision tree
to fit the local geometry of the problem.

We also notice that SBNB-P improves over SBNB-N, which
can be seen as another acceleration of SBNB. In particular,
SBNB-P performs always as well as SBNB-N as emphasized
by the gains in the right-hand side of Fig. 1. We note in
particular the gain provided by peeling in terms of number of
nodes processed by the BnB procedure: as expected, peeling
allows for more aggressive pruning and thus reduces the
number of nodes to be explored.

VI. CONCLUSION

In this paper, we presented a tractable strategy, named “peel-
ing”, to tighten the box constraints used in a BnB procedure
tailored to `0-regularized least-squares problems. Unlike the
standard approach which imposes one global constraint to the
problem, our strategy aims to locally refine the box constraints
at each node of the decision tree. This refinement enables to
strengthen the convex relaxations used in the pruning decisions
made by the BnB procedure and can lead to significant
improvements in terms of solving time, as emphasized by our
simulation results.
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