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Abstract—The simultaneous sparse coding (SSC) problem con-
sists in approximating several data points as linear combinations
of the same few basis elements selected within a given dictionary.
It is key in many applications of machine learning and signal
processing. Solving SSC up to global optimality has never been
explored in the literature, to the best of our knowledge. In this
paper, we propose a reformulation of SSC into a mixed-integer
quadratic program (MIQP) solvable globally by generic solvers.
We also consider a variant of SSC with nonnegativity constraints.
We show experimentally that the global resolution can be applied
in practice to medium-scale problems. For larger-scale problems,
we propose a hybrid method that first uses a heuristic as a pre-
processing to reduce the size of the original problem, and then
solves the reduced problem exactly. Empirically, we show that our
hybrid method outperforms existing heuristics on both synthetic
data and in the unmixing of real-world hyperspectral images.

Index Terms—Simultaneous sparse coding, multiple measure-
ment vectors, mixed-integer reformulation, nonnegativity.

I. INTRODUCTION AND RELATED WORK

Given a matrix X ∈ Rm×n, a dictionary D ∈ Rm×s, and
a sparsity target r ∈ N, the simultaneous sparse coding (SSC)
problem consists in finding H ∈ Rs×n with at most r non-
zero rows such that X ≈ DH . Formally, using the squared
Frobenius norm as a data fidelity measure, SSC corresponds
to the following optimization problem:

min
H
∥X −DH∥2F s.t. ∥H∥row−0 ≤ r, (1)

where the row-0 “norm” ∥H∥row−0 = |{i|H(i, :) ̸= 0}|
denotes the number of non-zero rows in H . In other words,
we are looking for a matrix H such that all its columns are
r-sparse (that is, they have at most r non-zero entries) and
share the same support, that is, the set of the indices of non-
zero entries. Note that (1) is equivalent to finding a subset
J of columns of D such that |J | ≤ r and X ≈ D(:, J)Ĥ
for some matrix Ĥ . SSC is also known by several other
names, such as simultaneous sparse approximation (SCA) [1],
multiple measurement vectors (MMV) [2], and joint sparse
coding (JSC) [3].

This work was supported by the Fonds de la Recherche Scientifique - FNRS
(F.R.S.-FNRS) and the Fonds Wetenschappelijk Onderzoek - Vlaanderen
(FWO) under EOS Project no O005318F-RG47, by the Francqui founda-
tion, and by the European Research Council (ERC consolidator grant no
101085607). NN is with Ghent University at the time of submission, but
he contributed to this work while he was with the University of Mons.

SSC arises when the data points, the columns of X , can
be expressed as different linear combinations of a few ba-
sis elements selected among an overcomplete dictionary, the
columns of D. Applications in signal processing are very
diverse and include compressed sensing, source separation,
source localization; see for example [1] and the references
therein. In this work, we focus on hyperspectral unmixing,
see section IV-B for details.

The row-0 constraint makes SSC a combinatorial problem,
with

(
s
r

)
different possible supports, therefore it is hard to

solve in large dimensions. For this reason, existing approaches
for SSC are mostly heuristic algorithms, that are computation-
ally fast but not guaranteed in general to recover an optimal
solution. The most popular ones rely on greedy algorithms [4]–
[6], or on convex relaxations [7], [8].

A popular variant of SSC considers a nonnegativity con-
straint on H . Formally, it reduces to the following problem,
that we coin as NSSC:

min
H
∥X −DH∥2F s.t.

{
∥H∥row−0 ≤ r,
H ≥ 0,

(2)

where H ≥ 0 means H is entry-wise nonnegative. The non-
negativity constraint is natural in many applications involving
physical values, so taking it explicitly into account generally
improves the recovery and produces more interpretable solu-
tions. Nonnegativity is also known to improve the regularity
of ill-posed problems [9]. As opposed to SSC which has been
studied extensively, only a few methods were proposed to
tackle NSSC.

All existing methods for (N)SSC rely on heuristics, but
having guarantees on the quality of the solution is important
in some applications. Therefore global optimization may be
desirable even if it requires more computing time. Also, by
solving globally the optimization problem, the analyst knows
that the possible error comes from either model misfit or
acquisition noise, and not from the solver.
Contribution and outline of the paper. Our first contribution,
in section II, is a reformulation of SSC into a mixed-integer
quadratic program (MIQP), including an optional nonnega-
tivity constraint. We show that medium-sized problems can
be solved globally using a generic solver. In section III, we
introduce a hybrid method that first uses a heuristic as a
preprocess to reduce the size of the original problem, and
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then solves exactly the reduced problem. We show empirically
in section IV that our strategy outperforms state-of-the-art
heuristics while being computationally efficient, with exper-
iments on both synthetic data and the unmixing of real-world
hyperspectral images.

II. MIQP REFORMULATION

The optimization of problems including both continuous
and integer variables is known as mixed-integer program-
ming (MIP). The generic solving of MIP is an active area
of research [10], and existing solvers can tackle efficiently
problems with linear or quadratic objectives, under linear or
quadratic constraints. Therefore, in this section we reformulate
the SSC problem (1) as a MIP with a quadratic objective
(MIQP) so it can be solved with generic solvers.

In SSC (1), the row-0 constraint is combinatorial but it
can be rewritten using auxiliary binary variables, as done for
example in [11] for the ℓ0 “norm” of a vector. Let the vector
y ∈ {0, 1}s represent the sparsity of the rows of H , that is,

yi = 0⇔ H(i, :) = 0 for all i. (3)

The row-0 “norm” can therefore be written as a simple sum,
∥H∥row−0 =

∑
i yi, and the constraint in (1) can be rewritten

using the following linear constraint∑
i

yi ≤ r.

Using a constant traditionally called “big M” to bound the
optimized variables, the constraint (3) can be rewritten as

−Myi ≤ H(i, j) ≤Myi for all i, j.

Choosing an appropriate value for M is nontrivial and usually
depends on application knowledge. The smaller the M , the
more restricted the feasible range of the entries of H , and the
faster the solving. However, the value of M must be larger
than the largest entry of the optimal (unknown) H so that the
solution is in the admissible domain.

The SSC problem (1) can therefore be reformulated, with
a quadratic objective and linear constraints, as the following
MIQP:

min
H,y

∑
j

H(:, j)TDTDH(:, j)− 2X(:, j)TDH(:, j)

s.t.
{
−Myi ≤ H(i, j) ≤Myi for all i, j,∑

i yi ≤ r,

(4)

where y is the binary auxiliary variable defined in (3). For the
objective, we simply used the fact that

∥X −DH∥2F = ∥X∥2F − 2 tr(X⊤DH) + tr(H⊤D⊤DH),

where tr(.) is the trace of a matrix (sum of its diagonal
elements). The non-negative variant (2) is easily obtained by
replacing the left-hand side of the constraint on the H(i, j)’s
with 0. The parameter r is set by the user and its corresponds
to the number of columns of the dictionary one wants to select.

Thanks to this formulation (4), the problem can be solved
exactly with generic solvers. We have created a Matlab script

that builds this model and calls the generic solver Gurobi1

to obtain a globally optimal solution. This exact method is
quite expensive computationally, but it can be used to tackle
moderate-size problems. An experiment on synthetic data
shows the evolution of the resolution time as a function of the
dimensions s and n with r = 4. On Figure 1, we display the
resolution time of the model for synthetic data with n = 2s.
This exact method can tackle in under 15 minutes a SSC
problem with s = 60, n = 120, r = 4, and a relatively
well-conditioned matrix D (see section IV for details on the
experimental setup).

Fig. 1. Evolution of time as a function of s, the number of columns in the
dictionary (we fixed r = 4 and the number of columns of X is n = 2s).
The red dotted line corresponds to a computing time of 15 minutes.

Unfortunately, because of this exponentially increasing
computing time, this exact approach is not suitable for larger-
scale problems. For this purpose, we introduce a hybrid
method in the next section, based on both heuristics and exact
solving.

III. HYBRID METHOD

The computational complexity of solving SSC exactly via
MIQP makes it impractical for large real-world problems,
which is why most existing works rely on approximate but
fast heuristics. By definition, heuristics are not guaranteed in
general to find the exact solution of a given SSC problem,
that is, to identify the right support J of nonzero rows of H .
However, they may identify correctly some rows belonging to
the support. In particular, when solving a SSC problem with
a given sparsity target r, running a heuristic with a larger
sparsity target, r′ > r, may well identify a set of rows that
contains, among others, the rows belonging to the correct
support. Therefore we introduce a two-step hybrid method:
First, it computes a support of cardinality r′ using a fast
heuristic. This reduces the original problem to a subproblem
restricted to this support, that is, s is reduced to r′ in (1).
Second, it computes a support of cardinality r by solving
exactly this smaller subproblem using MIQP. This method is
described in Algorithm 1.

1Although it is a closed-source commercial software, see https://www.
gurobi.com/, free use is possible for academic users.
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Algorithm 1: Hybrid method for SSC.
Input: Input matrix X ∈ Rm×n, dictionary

D ∈ Rm×s, factorization rank r ∈ N,
intermediate rank r′ ∈ N with r′ > r, a
heuristic algorithm for SSC.

Output: Matrix H∗ ∈ Rs×n such that X ≈ DH∗ and
∥H∗∥row−0 ≤ r

1 H ′ ← heuristic(D,X ,r′)
2 J ′ ← {i|H ′(i, :) ̸= 0}
3 H∗ ← argminH,∥H∥row−0≤r ∥X −D(:, J ′)H∥2F

On line 1, we solve approximately the original SSC problem
using a given heuristic, but with a sparsity target r′ > r. Note
that any existing heuristic for SSC can be used at this step. The
result is an intermediary matrix H ′ with a row-sparsity of r′

and a row-support J ′. This step can be seen as a preprocessing
of the dictionary, to reduce it to r′ columns. On line 3, we
build a smaller subproblem by considering only the columns
of D indexed by J ′, and we solve this subproblem exactly
using the MIQP reformulation introduced in section II.

The choice of the parameters is quite intuitive. The pa-
rameter r corresponds to the number of basis elements or
features one wants to extract from the dictionary, and it is
often given naturally by the application at hand. For example,
in hyperspectral unmixing, r is the number of materials we
want to identify in an image; see section IV-B for details. On
the other hand, r′ should be as large as possible to increase
the chances of extracting the best columns of the dictionary
during the preprocessing step, and as small as needed to ensure
a reasonable computing time.

In terms of complexity, the MIQP problem on line 3 of
Algorithm 1 has

(
r′

r

)
possible solutions, which is signifi-

cantly smaller than the
(
s
r

)
feasible solutions of the original

problem (1) when s ≫ r′. Note that each feasible solution
requires solving a convex quadratic optimization problem in
rn variables (corresponding to the r selected non-zero rows
of H) which can be done, for example, in O(mnr) operations
with a first-order method. In practice, the generic solvers use
pruning techniques such as branch-and-bound and generally
evaluate only a fraction of the feasible solutions. Therefore
the computational cost is generally far from this worst case.

Although this hybrid method is not guaranteed in general
to identify the right support, it is quite efficient in practice, as
we show in section IV.

IV. EXPERIMENTS

Several experiments are now carried out to illustrate the
capacity of our hybrid method to produce more accurate
solutions. We considered two greedy heuristic methods: S-SP
and S-OMP from [5]. We compare heuristic methods with their
hybrid versions, that is, using a heuristic combined with exact
solving as in Algorithm 1 on both synthetic and real-world
data.

All experiments were performed on a personal computer
with an i7 processor with a clock frequency of 2.80GHz. To
make our experiments easily reproducible, we provide the code
and test scripts in an online repository2.

A. Synthetic data sets

In this section, we study the performance of our hybrid
method on synthetic data, when noise varies.

We generate synthetic data sets as follows. The dictionary
D is constructed by selecting randomly s columns of the
USGS hyperspectral library3. The set J of r columns of the
dictionary D is then chosen at random. The entries in the
rows of H indexed by J are drawn randomly according to a
normal distribution, and the other rows are set to zero. The
matrix X is then constructed as X = DH . A Gaussian noise
matrix N is added to X , we define the noise level of noisy
Xn = X+N as ∥D(:,J)H(J,:)∥F

∥N∥F
. Then, we solve the resulting

SSC problem with noisy data, with the original heuristics S-SP
and S-OMP and with our hybrid method (Algorithm 1) using
both heuristics in step 1.

The parameters are set to s = 100, n = 100, r = 3, and
for the hybrid methods r′ = 30. The experiment is repeated
10 times for each of the 10 noise levels between 10−3 and
10−0.5, so each point of the following plots is an average
over 10 random data sets. We plot for each method and as a
function of the noise level:

• the computing time on fig. 2;
• the column recovery rate on fig. 3, that is, the percentage

of columns of the original support in the generated data
that are correctly recovered in the computed solution;

• the relative reconstruction error on fig. 4, that is
∥X−DH∗∥F

∥X∥F
with H∗ the computed row-sparse solution.

The results on fig. 3 show that, even with very little noise,
the heuristic methods fail to identify the correct columns. They
have a recovery rate between 40 and 60%. On the other hand,
both variants of our hybrid method have a recovery rate above
80%. It diminishes for a noise higher than 5% but in all
cases they outperform the corresponding heuristics. On fig. 4,
we see that for small noise levels the error of the solution
computed by our hybrid method is close to 0, meaning the
reconstruction is almost perfect. Then, the error grows slower
than linear with the noise level. On the contrary, the solutions
given by the heuristics are always above 40% of error, which
represent a mostly failed reconstruction. The trade-off for the
better performance of our hybrid method is a relatively slow
speed. We see on fig. 2 that although the computing time of
the hybrid method increases very little with the noise level, it
is always significantly higher than the heuristics.

B. Real-world hyperspectral unmixing

A well-known application of nonnegative SSC is hyperspec-
tral unmixing (HU), that we describe briefly here; see for
example [12] for more details. A hyperspectral image is an

2https://gitlab.com/Alexia1305/SSC
3https://www.usgs.gov
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Fig. 2. Evolution of the computing time in seconds for different levels of
noise. Plotted values are the average over 10 random data sets. Axis are in
log scale.
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Fig. 3. Evolution of the proportion of correctly recovered columns in percents
for different levels of noise. Plotted values are the average over 10 random
data sets. The x-axis is in log scale.

image of scene acquired within many narrow spectral bands,
usually a few hundreds. Therefore for each pixel we have
a precise electromagnetic spectrum, that gives information
about the materials present in the pixels. Following the linear
mixing model, the spectrum of a given pixel is the additive
linear combination of the material it contains. The goal of
hyperspectral unmixing is to decompose the hyperspectral im-
age into a collection of constituent spectral signatures (called
endmembers) and into a set of corresponding abundances.

If X is the data matrix where each column corresponds
to the spectrum of a pixel of the hyperspectral image, and
D a dictionary whose columns correspond to the spectra of
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Fig. 4. Evolution of the relative reconstruction error in percents for different
levels of noise. Plotted values are the average over 10 random data sets. The
x-axis is in log scale.

some known materials, then the entries of H represent the
abundance of each material in each pixel. The nonnegativity
constraint is natural as abundances are physical nonnegative
quantities, the NSSC model (2) is therefore equivalent to
solving hyperspectral unmixing.

A common assumption in hyperspectral unmixing is the so-
called pure-pixel assumption, stating that for each material
present in the image, there is at least one pixel containing only
this material. It is usually verified in real-world hyperspectral
images when the spatial resolution is good enough. Using this
assumption, we can use the input data X itself as a self-
dictionary, that is, use the dictionary D = X . The problem
is then equivalent to nonnegative matrix factorization under
the separability assumption [13].

In this experiment, we perform NSSC with self-dictionary
using our hybrid method (Algorithm 1) on real-world hy-
perspectral images. This is equivalent to selecting a subset
X(:, J ′) of r′ columns of the input data with a heuristic, and
then performing exact NSSC to extract a set of r columns
from this subset of pixels X(:, J ′). We use four real-world
hyperspectral images [14], see Table I for details. As a

TABLE I
SUMMARY OF THE HYPERSPECTRAL IMAGES STUDIED IN THIS WORK.

Data set m n r r′

San Diego 158 400× 400 = 160000 8 80
Urban 162 307× 307 = 94249 6 60
Terrain 166 500× 307 = 153500 5 50
Samson 156 95× 95 = 9025 3 30

pre-processing heuristic, we use here the clustering-based
algorithm H2NMF [15]. Note that the size of the problems
considered make impossible to solve them directly with an
MIQP solver. We compare our results with two standard
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methods:
• FGNSR [16], an algorithm based on convex relaxation

which deals specifically with self-dictionary NSSC,
• NMFdico [6], [17], a greedy algorithm for NSSC.

The pre-processing with H2NMF is also used for FGNSR and
NMFdico. After selecting the subset X(:, J) of r columns of
X , the computation of matrix Ĥ is a standard nonnegative least
squares (NNLS) problem and we solve it using a block coor-
dinate descent scheme [18], as in [16]. To evaluate the com-
puted solutions without knowing the ground-truth solution, we
measure the relative reconstruction error ∥X−X(:,J)Ĥ∥F

∥X∥F
with

X the original input matrix, and J the index set of the r
selected columns. The parameter r corresponds to the number
of material we expect to find in the image, and we choose it
as in the literature, see for example [14]. We set the parameter
r′ = 10r.

TABLE II
RESULTS OF THE UNMIXING OF REAL-WORLD HYPERSPECTRAL IMAGES.
TIME IS IS SECONDS, ERROR IS THE RELATIVE RECONSTRUCTION ERROR
IN PERCENTS. BOLD NUMBERS CORRESPOND TO OUR HYBRID METHOD

(ALGORITHM 1) USING H2NMF AS A PRE-PROCESSING HEURISTIC.

Data San Diego Urban Terrain Samson
r 8 6 5 3
r’ 80 60 50 30

Time FGNRS 0.04 0.03 0.03 0.01
NMFdico 0.01 0.01 0.02 0.01
Ours (Alg. 1) 83.6 7.76 1.21 0.64

Error FGNRS 9.21 6.03 3.73 3.48
NMFdico 9.05 6.03 3.52 3.2
Ours (Alg. 1) 8.35 4.27 3.32 3.06

Table II shows the results of this experiment. In terms of
relative reconstruction error, our hybrid method outperforms
competing algorithms for all data sets. The difference is
especially important for larger data sets with larger r, in
San Diego and Urban. The trade-off is a computing time
that is significantly larger and seems to grow exponentially
with r. However, our method still carries out the unmixing of
large real-world images in a few minutes or seconds using a
personal computer. The acquisition of hyperspectral images
is a complex and time-consuming task, and hyperspectral
unmixing is usually a one-time operation, so our method is
useful when the user can spend a little more time to obtain a
better quality unmixing.

To further accelerate the method, we could use a time limit
for the MIQP solver, that is, stop the solver after a fixed
amount of time and return the best solution found so far.
Indeed, in many practical cases the solver finds the optimal
solution quite fast, and then spends most of the computing time
to guarantee the optimality; see [19] for a numerical example.
With early stopping, we lose the optimality guarantee but we
can have a good solution in only a fraction of the time.

V. CONCLUSION

In this paper, we studied the simultaneous sparse coding
problem and its nonnegative variant. We introduced an ap-
proach to solve it up to global optimality using a MIQP refor-

mulation, and showed that it can effectively handle medium-
sized problems. To be able to tackle larger-scale problems,
we introduced a hybrid method, that first uses a heuristic
to pre-select columns of the dictionary to form a smaller
intermediary problem and then solves this smaller problem
globally with the MIQP reformulation. We showed on both
synthetic data and real-world hyperspectral unmixing tasks
that our hybrid method outperforms existing algorithms on
large-scale problems, at the cost of a higher computing time.
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