
A Recursive Newton Method for Smoothing
in Nonlinear State Space Models

Fatemeh Yaghoobi*, Hany Abdulsamad†, Simo Särkkä
Department of Electrical Engineering and Automation, Aalto University, Finland

{fatemeh.yaghoobi, hany.abdulsamad, simo.sarkka}@aalto.fi

Abstract—In this paper, we use the optimization formulation
of nonlinear Kalman filtering and smoothing problems to develop
second-order variants of iterated Kalman smoother (IKS) meth-
ods. We show that Newton’s method corresponds to a recursion
over affine smoothing problems on a modified state-space model
augmented by a pseudo measurement. The first and second
derivatives required in this approach can be efficiently computed
with widely available automatic differentiation tools. Further-
more, we show how to incorporate line-search and trust-region
strategies into the proposed second-order IKS algorithm in order
to regularize updates between iterations. Finally, we provide
numerical examples to demonstrate the method’s efficiency in
terms of runtime compared to its batch counterpart.

Index Terms—Newton’s method, state-space model, iterated
Kalman filter and smoother, line search, trust region.

I. INTRODUCTION

State estimation problem in nonlinear state-space models
(SSMs) plays an important role in various areas of applications
such as in control theory, signal processing, and robotics [1]–
[3]. In this paper, we are interested in solving state estimation
problems in SSMs of the form

xk = f(xk−1) + qk−1, yk = h(xk) + rk, (1)

xk ∈ Rd is the state at time step k, yk ∈ Rm is the
measurement at the same time step, f(.) is the state transition
function, and h(.) is the observation function. Furthermore,
qk and rk are the process and measurement noises, assumed
to be Gaussian with zero mean and covariance matrices Q and
R, respectively. The prior distribution of the state at k = 0 is
Gaussian with known mean m0 and covariance P0.

The smoothing problem (see, e.g., [1]) amounts to comput-
ing the estimate of the state xk given a batch of measurements
y1, . . . ,yN , where k ∈ {0, . . . , N}. The Kalman filter [4] and
Rauch–Tung–Striebel (RTS) smoother [5] for linear SSM and
their extension for nonlinear systems (see, e.g., [1], [2], [6]–
[11]) provide powerful recursive solutions which are optimal
in the minimum mean squared error (MMSE) sense.

On the other hand, the smoothing problem can be viewed in
an optimization framework (see, e.g., [8], [12]), where the aim
is to find the maximum a posteriori (MAP) trajectory estimate,
that is, the trajectory x∗

0:N which maximizes p(x0:N | y1:N ).

This work was funded by the Academy of Finland* and the Finnish Center
for Artificial Intelligence (FCAI)†.

For the SSM of the form (1), the MAP estimate is the
minimizer of the negative log-posterior

x∗
0:N = argmin

x0:N

L(x0:N ), (2)

where the negative log-posterior is given by

L(x0:N ) =
1

2
∥x0 −m0∥2P−1

0
+

1

2

N∑
k=1

∥xk − f(xk−1)∥2Q−1

+
1

2

N∑
k=1

∥yk − h(xk)∥2R−1 , with ∥x∥2A := x⊤Ax. (3)

Viewing the state estimation problem from an optimization
standpoint enables us to employ several optimization tech-
niques [13]. One widely-used example in the filtering and
smoothing literature is the Gauss–Newton (GN) method [14]–
[16], which has a close relationship with iterated extended
Kalman filtering and smoothing methods [8], [17]. In particu-
lar, for nonlinear SSM with additive Gaussian noise, Bell [8]
proved that the GN-method is equivalent to the iterated ex-
tended Kalman smoother (IEKS), a recursive method with less
computational complexity than batch GN-methods. Recently,
Särkkä & Svensson [12] developed line-search and Levenberg-
Marquart extensions of the IEKS method.

Newton’s method has received less attention as an opti-
mization method to solve smoothing problems due to the
effort associated with computing second-order derivatives.
However, the availability of automatic differentiation tools
has eliminated the need for manual computation, making
Newton’s method attractive for smoothing problems. Although
the application of Newton’s method to filtering and smoothing
has been mentioned in literature [18]–[20], the full Newton
version of the IKS is yet to be realized.

The contribution of this paper is to develop the Newton
formulation of iterated Kalman smoothers while leveraging
automatic differentiation tools to compute the derivatives and
Hessians. We also present robust modifications of the proposed
method that incorporate line-search and trust-region schemes
into the recursive structure.

This paper is structured as follows: Section II presents
Newton’s method for the MAP problem in batch and recursive
form. Section III presents line-search and trust-region strate-
gies to enhance the robustness of iterative Newton updates.
Section IV analyzes the efficiency of the proposed recursive
methods in the sense of runtime on a numerical example.

1758ISBN: 978-9-4645-9360-0 EUSIPCO 2023



II. NEWTON ITERATED KALMAN SMOOTHER

Assuming a SSM of the form (1) and the objective specified
in Equation (3), our aim, in this section, is to use Newton’s
optimization technique to minimize the objective function and
develop the corresponding batch solution. Subsequently, we
present a recursive alternative analogous to the IKS to improve
computational efficiency.

A. Batch Newton Optimization

The batch solution for smoothing follows the standard iter-
ative optimization framework without specifically leveraging
the underlying temporal structure of the problem. Accordingly,
we can implement Newton’s method as a generic second-order
optimization of Equation (3) with respect to a decision variable
x0:N with a dimension dN = d×N .

At every iteration i, Newton’s method approximates a twice
differentiable objective L(x0:N ) up to the second order in the
neighborhood of a nominal trajectory x̂

(i)
0:N

L(x0:N ) ≈L(x̂
(i)
0:N ) +∇L⊤(x̂

(i)
0:N )(x0:N − x̂

(i)
0:N ) (4)

+
1

2
(x0:N − x̂

(i)
0:N )⊤∇2L(x̂

(i)
0:N )(x0:N − x̂

(i)
0:N ),

where ∇L(.) and ∇2L(.) denote the gradient and the Hessian
of L(.), respectively. Using this quadratic approximation, we
get the Newton update rule

x̂
(i+1)
0:N = x̂

(i)
0:N − (∇2L(x̂

(i)
0:N ) + λ IdN

)−1∇L(x̂(i)
0:N ). (5)

Note that we have included a diagonal regularization term
λ IdN

, with λ ≥ 0, to ensure a positive-definite Hessian and a
valid descent direction.

Despite the convenience of automatic differentiation frame-
works that readily deliver ∇L(.) and ∇2L(.), the computa-
tional effort associated with the Newton update in Equation (5)
is still a major issue. The Hessian ∇2L(.) is of dimensions
dN×dN , and its inversion leads to a worst-case computational
complexity O(N3d3), which scales poorly both in the state
dimension and the trajectory length.

In the following, we will rely on the quadratic approxi-
mation in Equation (4). However, by taking advantage of the
temporal structure of the state-space model, we will construct
a modified affine state-space model and derive a recursive
algorithm akin to the iterated Kalman smoother, leading to
a considerable reduction in computational complexity.

B. Recursive Newton Optimization

Constructing the modified state-space model requires an-
alyzing the first- and second-order approximations of the
individual terms in Equation (3). We start by considering the
approximation of the transition dynamics term. For conve-
nience, we define

S(x0:N ) :=

N∑
k=1

Sk(xk,xk−1) =

N∑
k=1

∥xk − f(xk−1)∥2Q−1 ,

and expand it around the current nominal trajectory x̂
(i)
0:N . For

a simplified notation, we drop the iteration index i

S(x0:N ) ≈ 1

2
δx⊤

0:N ∇2S(x̂0:N ) δx0:N

+∇S⊤(x̂0:N ) δx0:N + S(x̂0:N ),

(6)

where δx0:N = x0:N − x̂0:N and

∇S⊤(x̂0:N ) δx0:N = 2

N∑
k=1

(x̂k − f(x̂k−1))
⊤Q−1 δxk (7)

− 2

N∑
k=1

(x̂k − f(x̂k−1))
⊤Q−1Fx(x̂k−1) δxk−1,

1

2
δx⊤

0:N ∇2S(x̂0:N ) δx0:N =

N∑
k=1

δx⊤
k Q

−1δxk (8)

− 2

N∑
k=1

δx⊤
k F

⊤
x (x̂k−1)Q

−1δxk−1

+

N∑
k=1

δx⊤
k−1F

⊤
x (x̂k−1)Q

−1Fx(x̂k−1) δxk−1

−
N∑

k=1

δx⊤
k−1F

⊤
xx(x̂k−1) ·Q−1(x̂k − f(x̂k−1)) δxk−1,

where Fx(.) is the Jacobian and Fxx(.) is a third-rank Hessian
tensor of the transition function f(.). The notation (M · v)
refers to a tensor dot product so that (M · v)ij =

∑
k Mijkvk.

Plugging Equations (7) and (8) into Equation (6) and apply-
ing simple algebraic manipulations, we arrive at the following
decomposition of the quadratic expansion in Equation (6)

S(x0:N ) ≈
N∑

k=1

∥xk − Fk−1 xk−1 − bk−1∥2Q−1

+

N∑
k=1

∥x̂k−1 − xk−1∥2Ψk−1
,

(9)

where

Fk−1 = Fx(x̂k−1),

bk−1 = f(x̂k−1)− Fx(x̂k−1) x̂k−1,

Ψk−1 = −F⊤
xx(x̂k−1) ·Q−1(x̂k − f(x̂k−1)).

A similar second-order expansion can be carried out for
the observation model term in Equation (3). Again, for con-
venience, we define the following

G(x0:N ) :=

N∑
k=1

Gk(xk) =

N∑
k=1

∥yk − h(xk)∥2R−1 ,

and expand it to the second order around x̂0:N

G(x0:N ) ≈ 1

2
δx⊤

0:N ∇2G(x̂0:N ) δx0:N

+∇G⊤(x̂0:N ) δx0:N +G(x̂0:N ),

(10)

1759



where the linear and quadratic terms are

∇G⊤(x̂0:N ) δx0:N = −2
N∑

k=1

(yk − h(x̂k))
⊤R−1Hx(x̂k) δxk,

1

2
δx⊤

0:N ∇2G(x̂0:N ) δx0:N =

N∑
k=1

δx⊤
k H

⊤
x (x̂k)R

−1Hx(x̂k)δxk

−
N∑

k=1

δx⊤
k H

⊤
xx(x̂k) ·R−1(yk − h(x̂k)) δxk.

The matrix Hx(.) is the Jacobian and Hxx(.) is a third-rank
Hessian tensor of the observation function h(.). Similarly, by
rearranging these terms, we can construct a specific decom-
position of the quadratic expansion in Equation (10)

G(x0:N )≈
N∑

k=1

∥yk−Hk xk−ck∥2R−1+

N∑
k=1

∥x̂k−xk∥2Γk
, (11)

where

Hk = Hx(x̂k),

ck = h(x̂k)−Hx(x̂k) x̂k,

Γk = −H⊤
xx(x̂k) ·R−1(yk − h(x̂k)).

We can now take the second-order terms of the transition and
observation functions in Equations (9) and (11) and plug them
back into the objective in Equation (3) which leads to the
overall (regularized) second-order approximation

L̃(x0:N ) =
1

2
∥x0 −m0∥2P−1

0
+

1

2
∥x0 − x̂0∥2Φ−1

0

+
1

2

N∑
k=1

∥x̂k − xk∥2Φ−1
k

+
1

2

N∑
k=1

∥yk −Hk xk − ck∥2R−1

+
1

2

N∑
k=1

∥xk − Fk−1 xk−1 − bk−1∥2Q−1 , (12)

where

Φ0 = (Ψ0 + λ Id)
−1,

Φk = (Ψk + Γk + λ Id)
−1,

ΦN = (ΓN + λ Id)
−1.

The result in Equation (12) indicates that the second-
order approximation of L(.) can be viewed as a first-order
approximation of the functions f and h, augmented by an
affine pseudo observation model, in which the expansion
point x̂k acts as a pseudo measurement of the state xk. This
interpretation of (12) corresponds to the modified state-space
model of the form

xk ≈ Fk−1 xk−1 + bk−1 + qk, qk ∼ N (0,Q),

yk ≈ Hk xk + ck + rk, rk ∼ N (0,R),

x̂k ≈ xk + ek, ek ∼ N (0,Φk),

with a modified prior distribution x0 ∼ N (τ0,Ω0)

Ω0 = (P−1
0 +Φ−1

0 )−1,

τ0 = (P−1
0 +Φ−1

0 )−1 (P−1
0 m0 +Φ−1

0 x̂0).

Algorithm 1 One Iteration of the (Regularized) Newton-IKS

1: input: Nominal trajectory x̂
(i)
0:N , measurements y1:N ,

Jacobians at nominal: F0:N−1, H1:N , offsets at nominal:
b0:N−1, c1:N , covariances at nominal: Q,R,Φ1:N , prior
at nominal: τ0, Ω0, and optional regularization λ

2: output: Smoothed trajectory x̂0:N

3: procedure NEWTON-IKS(x̂(i)
0:N , λ):

4: Set xf
0 ← τ0(λ), P

f
0 ← Ω0(λ) ▷ Initialize

5: for k ← 1 to N do
6: xp

k ← Fk−1 x
f
k−1 + bk−1 ▷ Prediction

7: Pp
k ← Fk−1P

f
k−1F

⊤
k−1 +Q

8: µk ← Hk x
p
k + ck

9: Σk ← Hk P
p
k H

⊤
k +R

10: Kk ← Pp
k H

⊤
k Σ

−1
k

11: xy
k ← xp

k +Kk(yk − µk) ▷ Measure. Update
12: Py

k ← Pp
k −KkΣkK

⊤
k

13: ∆k ← Py
k +Φk(λ)

14: Uk ← Py
k∆

−1
k

15: xf
k ← xy

k +Uk(x̂
(i)
k − xy

k) ▷ Pseudo Update
16: Pf

k ← Py
k −Uk∆kU

⊤
k

17: end for
18: Set x̂N ← xf

N and PN ← Pf
N

19: for k ← N − 1 to 0 do
20: Gk ← Pf

k F
⊤
k (Pp

k+1)
−1

21: x̂k ← xf
k +Gk(x̂k+1 − xp

k+1) ▷ Smoothing

22: Pk ← Pf
k +Gk(Pk+1 −Pp

k+1)G
⊤
k

23: end for
24: end procedure

Note that we have again included a diagonal term λ Id
equivalent to that in Section II-A. In this modified state-space
model, λ Id can be interpreted as regularization of the pseudo
observation model to guarantee a positive-definite covariance
and well-defined Gaussian noise. The significance of this
regularization will become clear in the upcoming section.

Given this modified affine state-space model, we can itera-
tively minimize the approximate objective in Equation (12) by
implementing a recursive RTS smoother [5] that incorporates
the pseudo measurements and dramatically lowers the com-
putational complexity to O(Nd3). Algorithm 1 summarizes
a single iteration of a Newton iterated Kalman smoother
(Newton-IKS). For more details on smoothing algorithms for
affine state space models, we refer to [1].

III. IMPLEMENTATION STRATEGIES OF NEWTON
ITERATED KALMAN SMOOTHERS

In the upcoming sections, we describe two algorithms
for a robust implementation of the Newton iterated Kalman
smoother. The line-search and trust-region strategies that we
incorporate into the Newton-IKS are realizations of fundamen-
tal principles in optimization for scaling and regularizing the

1760



update of an iterate x̂
(i)
0:N along a direction p(i) to guarantee

a consistent reduction of the objective [13].

A. Recursive Newton Method with Line Search

The procedure of line search assumes the existence of a
direction p(i) at a current iterate x

(i)
0:N and proposes an updated

iterate x
(i+1)
0:N . The distance taken along the direction p(i)

is scaled by a step size α > 0 in a way that guarantees a
reduction of the objective function

x̂
(i+1)
0:N = x̂

(i)
0:N + αp(i). (13)

In our case, the Newton-IKS from Section II-B indirectly
supplies the search direction of the smoothed trajectory via
p(i) = x̂0:N − x̂

(i)
0:N , where x̂0:N is the output of Algorithm 1

given the current iterate x̂
(i)
0:N as a nominal trajectory.

However, the direction that the Newton-IKS delivers may
not be a valid search direction as the Hessian of the ob-
jective function may not be positive-definite. To overcome
this challenge, we propose a simple approach that increases
the diagonal regularization factor λ until the expected cost
reduction is positive L̃(x̂

(i)
0:N ) − L̃(x̂0:N ) > 0 where L̃(.) is

the (regularized) second-order approximation in Equation (12),
which corresponds to a descent direction.

Given a descent direction p(i), various approaches are
available for choosing α exactly or approximately [13]. We
choose to apply a backtracking line-search scheme to find a
step size α such that L(x̂(i)

0:N +αp(i)) < L(x̂
(i)
0:N ), where L(.)

is the original nonlinear objective in Equation (3). Algorithm 2
provides an overview of a Newton-IKS algorithm with an
approximate line-search strategy.

B. Recursive Newton Method with a Trust Region

While line-search techniques optimize the step size along
a pre-defined search direction, trust-region methods intervene
and directly modify the search direction based on an approx-
imate model of the nonlinear objective in a region around the
current iterate. The size of this region implies the relative trust
of the local approximation and simultaneously influences both
the update direction and the step size.

In the case of the Newton-IKS, we implement a trust-region
technique akin to a Levenberg-Marquardt algorithm [21]. This
approach directly controls the regularization in Equation (12)
to modify the search direction based on the quality of the
local approximation. The quality is measured by the ratio of
the actual cost difference to the expected cost difference given
a nominal trajectory x̂

(i)
0:N and a candidate solution x̂0:N

ρ =
∆L

∆L̃
=

L(x̂
(i)
0:N )− L(x̂0:N )

L̃(x̂
(i)
0:N )− L̃(x̂0:N )

.

An update is accepted when ρ > 0, implying that the current
approximation is close to the true underlying objective around
the current iterate, and the trust region is enlarged accordingly
by reducing λ. When ρ ≤ 0, the update is rejected, and the
region is tightened by increasing λ. Algorithm 3 provides an
overview of the Newton-IKS with a trust-region strategy.

Algorithm 2 Newton-IKS with Line Search

1: input: Initial trajectory x̂
(0)
0:N , measurements y1:N , Mod-

els, Hessians, and Jacobians: f ,h,Fx,Hx,Fxx,Hxx,
constants: m0,P0,Q,R, backtracking mult. β ∈ (0, 1),
backtracking iterations M , and overall iterations Ni

2: output: The MAP trajectory x̂∗
0:N

3: for 0 ≤ i < Ni do
4: x̂0:N ← NEWTON-IKS(x̂(i)

0:N , λ = 0)

5: if L̃(x̂(i)
0:N )− L̃(x̂0:N ) > 0 then

6: p(i) ← x̂0:N − x̂
(i)
0:N ▷ Descent direction

7: else
8: Set λ← 10−6

9: x̂0:N ← NEWTON-IKS(x̂(i)
0:N , λ) ▷ Regularize

10: while L̃(x̂
(i)
0:N )− L̃(x̂0:N ) ≤ 0 and λ ≤ 1016 do

11: λ← 10λ
12: x̂0:N ← NEWTON-IKS(x̂(i)

0:N , λ)
13: end while
14: p(i) ← x̂0:N − x̂

(i)
0:N

15: end if
16: Set α← 1, m← 0

17: while L(x̂
(i)
0:N + αp(i)) ≥ L(x̂

(i)
0:N ) and m ≤M do

18: α← β α, m← m+ 1 ▷ Backtracking
19: end while
20: if L(x̂(i)

0:N + αp(i)) < L(x̂
(i)
0:N ) then

21: x̂
(i+1)
0:N ← x̂

(i)
0:N + αp(i) ▷ Accept step

22: else
23: x̂

(i+1)
0:N ← x̂

(i)
0:N ▷ Reject step

24: end if
25: end for

Algorithm 3 Newton-IKS with a Trust Region

1: input: Initial trajectory x̂
(0)
0:N , measurements y1:N , Mod-

els, Hessians, and Jacobians: f ,h,Fx,Hx,Fxx,Hxx,
constants: m0, P0, Q, R, initial regularization λ0, reg-
ularization mult. ν > 1, and overall iterations Ni

2: output: The MAP trajectory x̂∗
0:N

3: Set λ← λ0 ν ← 2
4: for 0 ≤ i < Ni do
5: x̂0:N ← NEWTON-IKS(x̂(i)

0:N , λ)

6: ∆L← L(x̂
(i)
0:N )− L(x̂0:N ) ▷ Actual cost diff.

7: ∆L̃← L̃(x̂
(i)
0:N )− L̃(x̂0:N ) ▷ Expected cost diff.

8: ρ← ∆L/∆L̃

9: if ρ > 0 and ∆L̃ > 0 then
10: λ← λmax{ 13 , 1− (2 ρ− 1)3}, ν ← 2

11: x̂
(i+1)
0:N ← x̂0:N ▷ Accept step

12: else
13: λ← ν λ, ν ← 2 ν

14: x̂
(i+1)
0:N ← x̂

(i)
0:N ▷ Reject step

15: end if
16: end for

1761



−1.5 −1 −0.5 0 0.5 1

−0.5

0

0.5

1

x-coordinate

y-
co

or
di

na
te

Newton-IKS
True States

Sensor 1
Sensor 2

Fig. 1. Example of a smoothed trajectory obtained from a Newton-IKS with
a trust-region method in the coordinated turn model.

IV. EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed
approaches using a simulated coordinated turn model example
with bearings-only measurements [12], [15], [19]. The system
has a 5-dimensional state vector x = [px, py, ṗx, ṗy, ω]

⊤

which describes the x−y position, the x−y velocity, and the
turn rate of the target. The bearing is measured by two sensors
located at known positions. Figure 1 depicts an example true
trajectory, an estimated trajectory using a trust-region Newton-
IKS, and the locations of the two sensors.

In addition to our recursive algorithms, we implement the
equivalent batch optimization techniques as presented in [13]
and use the same hyperparameters in the line-search and trust-
region variants. We focus on comparing the computational
complexity of the recursive and batch techniques. We rely on
JAX [22] for automatic differentiation.

In this study, we investigate trajectories of different lengths,
ranging from N = 100 to N = 1500, and report the average
runtime (over 20 runs) of running 30 overall iterations of the
iterated batch and recursive Newton methods. The average run-
time as a function of trajectory length is illustrated in Figure 2.
As expected, the computational performance of the recursive
Newton algorithms is superior to their batch counterpart in
terms of runtime. An open-source implementation is available
at https://github.com/hanyas/second-order-smoothers.

V. CONCLUSION

We presented a computationally efficient realization of New-
ton’s method for smoothing in nonlinear state-space models
with additive noise. We leveraged automatic differentiation
tools to compute the required first- and second-order deriva-
tives with minimal effort and formulated a corresponding
affine state-space model with augmented pseudo measure-
ments. We showed that this modified SSM form enables
the implementation of a recursive, computationally favorable
Kalman smoothing algorithm equivalent to a Newton step. Fur-
thermore, We proposed line-search and trust-region extensions
of the proposed method to ensure the convergence to a local
optimum. Finally, we empirically validated the efficiency of
our recursive Newton method against standard batch solutions.

102 103

100

101

102

N number of time steps

R
un

tim
e

in
se

co
nd

s

Batch LS-Newton
Recursive LS-Newton

Batch TR-Newton
Recursive TR-Newton

Fig. 2. Runtime comparison of the batch Newton method against the recursive
trust-region (TR) and line-search (LS) Newton algorithms.

REFERENCES

[1] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge University
Press, 2013.

[2] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Applica-
tions to Tracking and Navigation. Wiley, 2001.

[3] Y. Bar-Shalom and X.-R. Li, Multitarget-Multisensor Tracking: Princi-
ples and Techniques. Yaakov Bar-Shalom, 1995.

[4] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME journal of Basic Engineering,
1960.

[5] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood estimates
of linear dynamic systems,” AIAA Journal, 1965.

[6] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Academic
Press, 1970.

[7] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new method for
the nonlinear transformation of means and covariances in filters and
estimators,” Transactions on Automatic Control, 2000.

[8] B. M. Bell, “The iterated Kalman smoother as a Gauss–Newton method,”
SIAM Journal on Optimization, 1994.

[9] Á. F. Garcı́a-Fernández, L. Svensson, M. Morelande, and S. Särkkä,
“Posterior linearization filter: Principles and implementation using sigma
points,” IEEE Transactions on Signal Processing, 2015.

[10] Á. F. Garcı́a-Fernández, L. Svensson, and S. Särkkä, “Iterated posterior
linearization smoother,” IEEE Transactions on Automatic Control, 2017.

[11] F. Tronarp, A. F. Garcı́a-Fernández, and S. Särkkä, “Iterative filtering
and smoothing in nonlinear and non-Gaussian systems using conditional
moments,” IEEE Signal Processing Letters, 2018.

[12] S. Särkkä and L. Svensson, “Levenberg-Marquardt and line-search
extended Kalman smoothers,” in International Conference on Acoustics,
Speech and Signal Processing. IEEE, 2020.

[13] S. Wright and J. Nocedal, Numerical Optimization. Springer, 1999.
[14] Á. F. Garcı́a-Fernández and L. Svensson, “Gaussian MAP filtering using

Kalman optimization,” Transactions on Automatic Control, 2014.
[15] M. Fatemi, L. Svensson, L. Hammarstrand, and M. Morelande, “A study

of MAP estimation techniques for nonlinear filtering,” in International
Conference on Information Fusion. IEEE, 2012.

[16] H. Moriyama, N. Yamashita, and M. Fukushima, “The incremental
Gauss-Newton algorithm with adaptive stepsize rule,” Computational
Optimization and Applications, 2003.

[17] B. M. Bell and F. W. Cathey, “The iterated Kalman filter update as a
Gauss–Newton method,” Transactions on Automatic Control, 1993.

[18] J. Humpherys, P. Redd, and J. West, “A fresh look at the Kalman filter,”
SIAM Review, 2012.

[19] M. A. Skoglund, G. Hendeby, and D. Axehill, “Extended Kalman filter
modifications based on an optimization view point,” in International
Conference on Information Fusion. IEEE, 2015.

[20] Y. Ollivier, “The extended Kalman filter is a natural gradient descent in
trajectory space,” arXiv preprint arXiv:1901.00696, 2019.

[21] K. Madsen and H. B. Nielsen, Introduction to Optimization and Data
Fitting, 2008.

[22] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclau-
rin, and S. Wanderman-Milne, “JAX: Composable transformations of
Python+NumPy programs,” http://github.com/google/jax, 2018.

1762


