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Abstract—The recently developed Phase-Scaled Reassignment
(PSR) can estimate phase-difference between two oscillating
transient signals with high accuracy. However, in low signal-
to-noise ratios (SNRs) the performance of commonly applied
reassignment techniques is known to deteriorate. In order to
reduce variance in low SNR, we propose a multitaper PSR
(mtPSR) method for phase-difference estimation between Gaus-
sian transient signals. Three possible variations of this method are
investigated and evaluated, mtPSR1, mtPSR2, and mtPSR3. All
three variations are shown to outperform state-of-the-art methods
and improve estimation accuracy in low SNR. The mtPSR1 is
superior in terms of computational efficiency while the mtPSR3
achieves the highest accuracy. The mtPSR technique is also shown
to be robust to model assumptions. An example of phase delay
estimates of the electrical signals measured from the brain reveals
promising results.

I. INTRODUCTION

Time-frequency (TF) methods are essential tools when
analysing signals that are multi-component and non-stationary.
Many such signals have oscillating structures that carry impor-
tant information, these signals can be found in various applica-
tions, e.g. vibration analysis, radar detection, geophysics, and
medicine. For multi-component signals of transient and short
amplitude modulated (AM) oscillating structures, we have
invented a matched reassigned spectrogram (MRS) technique
that sharpens the TF representation of such signals and is
used to accurately estimate signal parameters [1]–[4]. For
signals with longer frequency modulated (FM) structures, TF
sharpening techniques include the TF reassignment [5], [6],
and synchrosqueezing [7], which have been further developed
in e.g. [8]–[12]. Other reassignment related methods, including
filtering techniques, for impulse signals and transient chirps
also exist [13], [14].

The phase delay between signals is of interest in many
fields, including direction of arrival estimation, source sep-
aration and spatio-temporal decoding in neurology and sound-
scape analysis. The reassigned spectrogram contains no phase
information, similar to all quadratic TF representations [15].
However, phase information is contained in the reassignment
vectors (RVs) and we have previously expanded the use of RVs
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into phase estimation techniques for the cross-spectrogram
[16]–[19]. These methods are TF local measures of phase
synchronisation and can measure the phase delay of tran-
sient signal structures more accurately than the commonly
used time-based Pearson’s linear correlation (CORR), TF
cross-spectrogram phase (XSP) [15], and Phase Lag Index
[20]. There are phase estimation methods utilising the syn-
chrosqueezing transform, however these methods are designed
for longer FM signals [21], [22].

In spectral analysis, multitapers are used to reduce variance
of spectra [23] and the Hermite functions are the optimal
choice with respect to TF resolution and orthogonality in the
TF domain [24]. For the reassignment methods, degradation
of the TF location estimates can happen for low SNRs,
because the RVs are sensitive to noise. To rectify this we have
recently presented a two-window phase reassignment, where
multitapers are used to reduce spectral variance [17]. Recently
we have also presented the complete theory for a Hermite
function multitaper reassigned spectrogram, which has shown
to significantly reduce the variance in the TF localisation
estimates for transient signals [4]. Multitaper methods have
also been explored earlier in connection to reassignment for
longer FM signals [7], [12].

In this paper we present and evaluate multitaper Phase-
Scaled Reassignment (mtPSR) techniques for relative phase
estimation between two oscillating transient signals. This work
extends on our Phase-Scaled Reassignment (PSR), shown to
estimate phase-difference with high efficiency and accuracy for
moderate SNR [18]. Section 2 details the multitaper reassigned
cross-spectrogram with proposed novel RVs, and in section 3
we outline three novel approaches to reduce variance using
the multitaper RVs. Evaluation of our methods are presented in
section 4, and in section 5 we demonstrate the performance on
measurements of electrical brain activity. Section 6 concludes
the paper.

II. MULTITAPER REASSIGNED CROSS-SPECTROGRAM

An oscillating transient signal is defined as

x(t) = g(t− t0)e
i2πf0t, t ∈ R (1)
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where t0 is the time delay, f0 the frequency, and g(t) the
real-valued Gaussian envelope function

g(t) = e−
t2

2σ2 . (2)

The signal x(t) can be extended to a pair of signals

yn(t) = Anx(t)e−iϕn , n = 1, 2 (3)

where y1(t) and y2(t) have the same time delay and oscillating
frequency but different amplitudes An and phases ϕn for n =
1, 2.

Next we define data windows hk(t), k = 0 . . .K − 1 from
the set of orthogonal Hermite functions [24],

hk(t) = Hk(
t

σ
)e−

t2

2σ2 , k = 0 . . .K − 1 (4)

where σ is the width defining parameter of the taper. Hk(t)
is the physicist Hermite polynomial of order k defined as

Hk(t) = (−1)ket
2 dk

dtk
e−t2 , k = 0 . . .K − 1. (5)

The short-time Fourier transform (STFT) of the signal yn(t)
with use of the window hk(t) is

Fhk
yn

(t, f) =

∫
yn(s)h

∗
k(s− t)e−i2πfsds (6)

where ∗ is the complex conjugate. All integrals run from −∞
to ∞ if not specified. A reassigned cross-spectrogram of the
signal pair y1(t) and y2(t) is defined as

RS(t, f) =

∫∫
S12(s, ξ)δ(t− t̂(s, ξ), f − f̂(s, ξ))ds dξ (7)

where S12(t, f) is the cross-spectrogram, and t̂(t, f) and
f̂(t, f) define the RVs. The two-dimensional Dirac impulse
function is defined as

∫∫
S(t, f)δ(t − t0, f − f0)dt df =

S(t0, f0). Different options for estimation of the cross-
spectrogram and the RVs will be explored in Section IIA and
III.

A. Novel multitaper reassignment vectors

Extending on our previous work on cross-spectrogram reas-
signment [17] and a multitaper reassigned spectrogram in [4],
we now propose RVs for the multitaper cross-spectrogram

t̂k(t, f) = t+ ℜ

ct
F thk
y1

− σ2F
dhk
dt

y1

Fhk
y2

 , (8)

f̂k(t, f) = f − 1

2π
ℑ

cf
F

dhk
dt

y1 − 1
σ2F

thk
y1

Fhk
y2

 (9)

where ℜ(.) and ℑ(.) denotes the real and imaginary operator,
ct and cf are constants, and (t, f) is dropped in the STFTs
for convenience. Based on the relation between the different
STFTs, see [4], the following simplifications of the STFT
expressions are found

Fhk
yn

= Ane
−iϕnFhk

x (10)

F thk
yn

= Ane
−iϕn(σkFhk−1

x − σ2β

2
Fhk
x ) (11)

F
dhk
dt

yn = Ane
−iϕn(

k

σ
Fhk−1
x +

β

2
Fhk
x ) (12)

where Fhk
x represents the STFT for the oscillating signal x(t)

in (1) and β = t/σ2 + i2πf . With (10-12) the RVs will be
simplified into

t̂k(t, f) = t−ℜ(ct
A1

A2
e−i∆ϕ(t+ i2πσ2f)) (13)

f̂k(t, f) = f −ℑ( cf
2π

A1

A2
e−i∆ϕ(

t

σ2
+ i2πf)) (14)

where ∆ϕ is the relative phase-difference between the signals,
to be estimated. For all k, the choices of

ct = cf =
A2

A1
ei∆ϕ (15)

result in perfectly localised energy in the cross-spectrogram at
(t0, f0), i.e. the TF-spatial centre of the component, and thus
giving a cross-spectrogram with low entropy.

III. PHASE ESTIMATION AND MTPSR
This section proposes three ways to estimate the relative

phase, ∆ϕ, for the mtPSR based on the novel RVs (8, 9). The
key difference between the three variations, mtPSR1, mtPSR2,
and mtPSR3, is at what stage in the estimation process the K
different cross-spectrograms are brought together to form a
single estimate ∆̂ϕ. The different variations are detailed and
summarized below as well as in Algorithm 1.

The mtPSR1 uses the multitaper cross-spectrogram,

Sm
12(t, f) =

1

K

K−1∑
k=0

Shk
12 (t, f), (16)

where the absolute value of the cross-spectrogram for the
single window hk(t) is defined as

Shk
12 (t, f) = |Fhk

y1
(t, f)(Fhk

y2
(t, f))∗|. (17)

The RVs are calculated as

t̂m(t, f) =
1

K

K−1∑
k=0

t̂k(t, f), (18)

f̂m(t, f) =
1

K

K−1∑
k=0

f̂k(t, f) (19)

before calculating the RS(t, f) in (7). According to our
previous work in [18], the ∆̂ϕ is obtained by evaluating the
Rényi entropy (with α = 3 and TF-domain area A)

RE =
1

1− α
log2

∫∫
A

(
RS(t, f)∫∫

A RS(s, ξ)ds dξ

)α

dt df (20)
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Algorithm 1 Phase estimation according to the three proposed methods: mtPSR1, mtPSR2, mtPSR3

Input: {Fhk
yn (t, f)}, {F thk

yn (t, f)}, {F
dhk
dt

yn (t, f)}, {∆ϕc} Output: ∆̂ϕ

Calculate S
hk
12 (t, f) = |Fhk

y1 (t, f)F
hk
y2 (t, f)∗| for k = 0, ...,K − 1

[mtPSR1]
for all ∆ϕc do

for k = 0 to K − 1 do
Calculate t̂k, f̂k (8, 9)

end for
Calculate Sm

12 (16), and t̂m, f̂m, (19)
Calculate RS (7), with Sm

12, t̂m, f̂m
Evaluate RE(∆ϕc) (20)

end for
∆̂ϕ = argmin∆ϕc

RE(∆ϕc)

[mtPSR2]
for all ∆ϕc do

for k = 0 to K − 1 do
Calculate t̂k, f̂k (8, 9)
Calculate RSk (7), with S

hk
12 , t̂k, f̂k

end for
RS = 1

K

∑K−1
k=0 RSk (21)

Evaluate RE(∆ϕc) (20)
end for
∆̂ϕ = argmin∆ϕc

RE(∆ϕc)

[mtPSR3]
for k = 0 to K − 1 do

for all ∆ϕc do
Calculate t̂k, f̂k (8, 9)
Calculate RSk (7), with S

hk
12 , t̂k, f̂k

Evaluate RE(∆ϕck) (20)
end for
∆̂ϕk = argmin∆ϕck

RE(∆ϕck)
end for
∆̂ϕ = ̸ (

∑K−1
k=0 ei∆̂ϕk ) (22)

of reassigned cross-spectrograms, RS(t, f), that are calculated
using different candidate phase differences ∆ϕc in (15) to
compute the RVs. The candidate that minimises the Rényi
entropy is chosen as ∆̂ϕ.

In the mtPSR2, the RVs in (8,9) and the cross-spectrograms
in (17) are brought together to form K different reassigned
cross-spectrograms RSk(t, f) in (7). These are averaged to
get a single multitaper reassigned cross-spectrogram

RS(t, f) =
1

K

K−1∑
k=0

RSk(t, f). (21)

To get an estimate ∆̂ϕ, the RS(t, f) is evaluated using the
Rényi entropy in the same way as for the mtPSR1.

Similarly, in the mtPSR3 K different RSk(t, f) are cal-
culated from Shk

12 (t, f) and t̂k(t, f), f̂k(t, f). But instead of
bringing them together to a single multitaper reassigned cross-
spectrogram, each RSk(t, f) is evaluated using the Rényi
entropy. This gives K estimates ∆̂ϕk that are averaged to
form a single estimate

∆̂ϕ = ̸ (

K−1∑
k=0

ei∆̂ϕk), (22)

where ̸ (z) takes the angle of a complex number z.

IV. EVALUATION

In this section the three mtPSR variations, mtPSR1,
mtPSR2, and mtPSR3, are compared and evaluated. Real-
valued oscillating transient signal pairs, y1(t) and y2(t), of
lengths N = 256 with Gaussian envelopes are simulated,
where the scaling of the window is σ = 13. All signals have
equal amplitudes, A1 = A2 = 1, time delays t0 = 1 s,
and frequencies f0 = 20 Hz, using sampling frequency
Fs = 128 Hz. The phases, ϕ1 and ϕ2, are randomly generated
from U(−π, π). White Gaussian noise is added to each signal,
where the SNR is defined as

SNR = 10 log10(
A2

1

s2
), (23)

with s2 as the noise variance. In Fig. 1 the signals are
exemplified, with and without noise, for ∆ϕ = π/3. All

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
-1

0

1
a) Signals 

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
-2

0

2
b) SNR = 0 dB

Fig. 1. Example of a simulated signal, ∆ϕ = π/3; a) without added noise;
b) SNR = 0 dB.

simulations are run with FFT-length 1024, and the Hermite
windows in the STFTs are assumed to be matched such that
σc = 13. Thirty-two equidistant ∆ϕc ∈ [−π, π[ are evaluated
such that each ∆ϕc correspond to a time-shift of 1.53 ms
for the considered signals. Moreover, the Rényi entropy is
evaluated over the entire TF-plane.

In Fig. 2, we illustrate the different performances of the
three variations when SNR = 0 dB. In Fig. 2a, the root mean
squared error (RMSE) is depicted for different number of
windows K. In Fig. 2b, the percentage of correct estimates,
defined as |∆̂ϕ − ∆ϕ| ≤ 1.5 2π

32 , is shown. This corresponds
to an allowed error of 2.30 ms for the considered signals.
For 2 ≤ K ≤ 4, the mtPSR1 is the most accurate, but for
K ≥ 7 the accuracy of the method deteriorates. For K ≥ 5 the
mtPSR3 continuously improves and remains the most accurate.
However, there is a trade-off between the gained accuracy
and increase in computational load. Furthermore, since reas-
signment only is done once in mtPSR1, independent of K,
it has the additional advantage of being less computationally
complex per increase in K compared to mtPSR3. As such,
in cases where computational efficiency is of importance the
mtPSR1 is the superior option as it can achieve sufficient
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Fig. 2. Phase estimation results for different number of Hermite windows,
10 000 simulations and SNR = 0 dB; a) the root mean squared error (RMSE)
of ∆̂ϕ; b) the percentage of correct estimates.
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Fig. 3. Phase estimation results for different SNRs, for 1000 simulations and
K = 4; a) the RMSE of ∆̂ϕ; b) the percentage of correct estimates.

accuracy for a small K.
We therefore choose K = 4 as we continue to compare the

methods to our previously proposed PSR method, as well as
to several state-of-the-art methods: CORR, XSP [15] and the
Hilbert transform, for different SNR. The cross-spectrogram
of the XSP is computed using the matched Gaussian window,
and for the maximum absolute value at each time point, the
phase values are extracted and averaged. The Hilbert transform
is used to find the instantaneous phase-differences ∆̂ϕ(t) [20],
and the average is used as an estimate. CORR is evaluated for
32 different time-lags, and the estimate is chosen as the time-
lag maximising CORR. In Fig. 3, all mtPSR variations are
shown to be more accurate than the PSR method, which in
turn is more accurate than the remaining state-of-art methods.
As the PSR methods are TF-based measures, they have a
clear advantage over time based measures such as CORR and
Hilbert. Moreover, the mtPSR3 is slightly more accurate in
high SNR. This is unsurprising as the mtPSR1 and mtPSR2
are restricted to find estimates ∆̂ϕ from a grid of candidates
∆ϕc, whereas the mtPSR3 can find estimates ∆̂ϕ between the
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Fig. 4. Phase estimation results for different choices of scaling σc in the
Hermite windows, for 1000 simulations, SNR = 0 dB and K = 4. The true
σ is marked with a black line; a) the RMSE of ∆̂ϕ; b) the percentage of
correct estimates.

grid points.
The greatest advantage with the mtPSR in comparison to

the PSR is its robustness to the matched-window assumption.
In real-data settings, the scaling parameter, σ, of the Gaussian
window might be unknown and difficult to estimate. In Fig. 4,
SNR = 0 dB and the windows have been calculated with a
scaling parameter σc that is different from the true scaling
of the signal envelope σtrue. The accuracy is drastically
reduced for the PSR if the matched window assumption is
violated, whereas the accuracy of mtPSR1 and mtPSR3 is
almost constant. For K > 4 this effect will be even more
apparent.

V. REAL DATA EXAMPLE

To illustrate performance for real data, 5 s of 20 Hz visual
evoked potentials in EEG was studied. Data was recorded at
electrodes in the 10-20 positions using a Neuroscan system
with band-pass settings 0.3 and 50 Hz and sample rate 256 Hz.
After recording, data was high-passed filtered at 5 Hz and
down-sampled to Fs = 64 Hz.

The oscillations are expected to originate from electrodes
at the visual cortex, i.e. electrodes O1 and O2, and propagate
forward. Fig. 5 shows the estimated ∆̂ϕ between O2 and
all other channels for the PSR and mtPSR1 methods. The
methods were applied with σ = 11/12Fs, and the signal
amplitudes Â1 and Â2 were estimated as the maximum value
of their respective spectrograms/multitaper spectrograms. The
reassignment was done in a small window around the signal,
and the Rényi entropy was evaluated in this same window.
At channel O2, both methods estimate approximately a zero
phase difference compared to O2, as expected. The largest
phase-differences are found for channels at the frontal lobe for
both methods, but the mtPSR method appears to give slightly
more cohesive estimates.
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Fig. 5. The figures show the estimated ∆̂ϕ between O2 and all other channels
using; a) the PSR; b) mtPSR1 using K = 4 windows.

VI. CONCLUSION

The novel multitaper Phase-Scaled Reassignment method
(mtPSR) is proposed and evaluated for robust estimation
of phase difference between two short oscillatory transient
signals. The performance of three different mtPSR variations
are tested for the matched window case, i.e. known signal
envelope, showing high accuracy for low SNR. Robust and
precise phase delay estimates are obtained already for a few,
around 4, windows, which makes the method computationally
viable. Importantly, the mtPSR method also show robustness
when the signal envelope is not known and estimated with
some error. The mtPSR method give promising results when
estimating the phase difference between different channels for
visual evoked potentials component of noisy EEG data.
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