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Abstract—The multiscale entropy (MSE) is used in a wide
range of applications, especially by physiologists with bio-signals
for classification. It consists in estimating the sample entropies
of the signal under study and its coarse-grained (CG) versions.
The CG process amounts to filtering the signal with an average
filter whose order is the scale and then to decimating the filter
output by a factor also equal to the scale. In this paper, the
novelty stands in the way to get the sequences at different scales,
by avoiding distortions that can appear during the decimation
step. If a low-pass filter is implemented, the cut-off frequency of
which is well suited to the decimation factor, the phase distortions
induced by the filter must be attenuated as much as possible. Two
ways are considered in this paper: 1/ design a linear-phase finite-
impulse-response filter with the window method or the Remez
algorithm. 2/ design a zero-phase filter from any infinite impulse
response filter. Simulations with white noises and 1/f processes
are given. The way the sample entropy evolves with the scale is
presented. Depending on the filter parameters, one can see how
it differs from the evolution obtained with the CG.

Index Terms—MSE, entropies, coarse-grained.

I. INTRODUCTION

In statistical signal processing, a standard processing chain
consists in extracting some features from the data that have
been collected with sensors. These features make it possible
to characterize the set of samples. They can help experts
understand some physical phenomena. Thus, the signal power
in some frequency bands can be representative of the activity
of the sympathetic or parasympathetic nervous system or the
activity of the brain. Among the possible features, one may
search for an a priori model to represent the data by a small set
of parameters. Thus, moving average autoregressive (ARMA),
fractionally integrated (FI) but also ARFIMA processes can
be considered. The first one can be used to model short-
memory processes while the others are relevant for long-
memory processes. Discrete fractional Gaussian noise (dfGn)
as well as discrete fractional Brownian motion (dfBm) can be
also of interest. Whatever the model, the model parameters are
related to the power spectral density (PSD) and consequently
to the correlation function. Other features can be used and are
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related to the regularity and the auto-similarity property of the
signal under study. In that case, the Hurst exponent can be of
interest and estimated with different approaches such as the
fluctuation analysis, the detrended fluctuation analysis [19] or
some variants [3].

In this paper, we focus our attention on another feature, namely
the entropy and more particularly the so-called multiscale
entropy (MSE) [8]. While Shannon entropy but also Rényi and
Sharma-Mittal entropies are widely used in signal processing
and can be the core of various subjects of research such
the analysis of the entropy rates [11] [10] in the field of
information theory, the sample entropy (SE) and the MSE are
less popular in our community. It has been mainly used in
biomedical applications by physiologists, but also for traffic
time series real vibration data, diagnosing rotating machinery
faults and financial markets. As various variants of the MSE
were proposed, a brief state of the art will be given in the paper
so that the reader can have a clear picture of the situation.
The standard version of the MSE is based on the following
principle: estimating the SE of the process at various “scales”.
This implies creating coarse-grained (CG) time series. From
a signal processing point of view, the signal is filtered by
an averaging finite-impulse-response (FIR) causal filter whose
order corresponds to the scale. The frequency response of the
filter is low-pass, and so all the more as the scale is high.
Then the filter output is decimated by a factor equal to the
scale. Finally, the sum of the SE of the CG time series is
used as a feature. As mentioned by various authors [22] [13]
and [26], the decimation may be problematic if the design
of the filter is not properly done. Indeed, Shannon theorem
should be satisfied for each scale. For this reason, in [22],
the FIR filter is replaced with an infinite-impulse-filter (IIR)
low-pass Butterworth filter whose cut-off frequency is chosen
to a posteriori decimate the signal properly. More recently in
2021, the authors in [26] use the same kind of filter.

Ithe resulting method is called parallel MSE by the authors.
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However, the phase distortions induced by these filters in
the pass band should be avoided. The Butterworth filter is
neither a linear-phase filter nor a null-phase filter. As a
consequence, the above versions address only a part of the
problem and introduce another issue, namely the filter-induced
phase distortion. Although these methods provide markers that
are used by the physiologists and other practitioners, they
remain questionable from the signal processing perspective. In
this paper, we propose to consider two types of solutions to fix
that problem: the first one consists in designing a linear-phase
FIR filter. The window method or the Remez algorithm can be
used and we will see which method is the most relevant. The
second one is based on an IIR-based structure which leads to
a null-phase equivalent filter.

The remainder of this paper is organized as follows. Section
IT deals with the multiscale entropy, its definition, but also
a state of the art on its variants. Then, in section III, we
present our contribution. This includes theoretical aspects but
also illustrations. In terms of methodology and according to
what was done before in the literature, when the authors want
to compare some variants, synthetic processes such as a white
noise and a 1/ f noise are considered. Then, the authors present
how the measure evolves with the scale, based on a certain
number of trials.

II. MULTISCALE ENTROPY:
DEFINITION, COMMENTS AND VARIANTS

A. Preamble: the sample entropy

The sample entropy (SampEn or SE) was proposed by
Richman and Moorman [20]. For a vector’ z; storing the
samples{x,, } n=1,..nv of the signal z, the SE can be expressed
as follows:
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probability that the distance between two different vectors
storing m values of the sample set is smaller than a tolerance
level r. Note that m and r are chosen by the user. m is often
set at 2 while r depends on the variance of the signal under
study. When the scale 7 is equal to 1, the original signal
is studied and the total number of vector pairs that can be

considered is equal to w

Among the results that have been estabhshed the SE of a
white noise and a 1/f noise were studied for different scales
7. An analytical expression for the unit-variance zero-mean
white noise was obtained [8] [15]:

estimated

SE(zy,T,m,r) = 2)
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2The subscript 1 refers to the first sample of the set of samples that are
considered.

where er f(x) f fo exp(—t?)dt refers to the error func-
tion. Given (2), the SE of a white noise monotonically de-
creases with 7 whereas the entropy of a CG 1/f noise is a
constant. In addition, the SE is sensitive to short duration sig-
nals. Indeed, Richman mentioned that more than 10™ samples
are required to get a good estimation of SE(z,, T, m,).
However, there is no clear relationship between the entropy-
based regularity and the complexity’. Indeed, when the above
quantity was directly used with physiologic signals and more
particularly heartbeat interval series, larger values were ob-
tained from pathological subjects than healthier ones. The con-
trary was rather expected by the experts because complexity
is related to the ability of living systems to adapt themselves
to the situation. Therefore, different scales of the signal were
considered, leading to the MSE.

B. Multiscale entropies (MSE): a measure of complexity

Twenty years ago, the MSE was proposed by Costa et al. [8]
to evaluate the complexity of a signal. It consists in summing
the SE of the signal itself but also the SEs of the time-series
derived from a CG procedure applied on the signal at different
scales. The LgJ samples yT(lT,)C are deduced by computing the
following arithmetic mean of the samples of the signal x:

) 1 nt+k—1
Ynke = = Z T; fork=1,..,7 3)
i=(n—1)7+k
Thus, yill)l = x,. Applying the CG on the signal x with a

factor 7 amounts to constructing the vector gg)

values {yfj,)c} withn € {1, ..., | ¥ |}. From a signal processing
point of view, this amounts to doing the following two steps:
1. Applying on the signal x a causal averaging filter

Its impulse response is given by hg) = % forn=0,...,7—1
and zero elsewhere. Its frequency response is given for the

by stacking the

normalized frequency f € [—1, 1] by:
sin(7 f71) if 0
|H(T)(f)| — 7sin(7 f) f ;é (4)
1if f=0

It is a low- pass filter which totally rejects the normalized
frequenc:1es - € [—5, 5[ with k positive or negative integers.
Due to the symmetry of the impulse filter, the filtering has
the advantage of having a linear phase, leading to a constant
group delay and no phase distortion of the signal in the band
pass. Only the steady state is considered in the following.
Remark: The choice of the CG based on (3) is not explicitly
motivated in the pioneering works [8]. It is true that CG is
often considered when dealing with dfGn processes (because
the normalized correlation function does not change with the
scale) and multifractal analysis.
2. Decimating the filter output by a factor 7
Due to the decimation, the frequency components of the signal
1

whose normalized frequencies are above 5- will be a source

3The complexity measure aims to represent the irregularities in time series
and makes it possible to indicate to what extent it is possible to recover all
the information from partial information.
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of aliasing. As the filters defined above have their main lobes
between —% and % and the side lobes are not necessarily much
attenuated, the filters are not well suited to be anti-aliasing
filters.

Given the above two steps, the SE is computed for each scale

and the MSE is defined by the sum ) %" SE (ygTﬁ 1,m, r):
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where 7,,,, is chosen by the user. It should be noted that only
y,(f) with k£ = 1 is used. In addition, one of the problems of

the MSE algorithm is the use of the same tolerance level r
for all scales [18]. Therefore, some variants were proposed.

C. Some existing variants

In 2009 and 2021, the refined MSE [22] and the parallel
MSE [26] were based on the same idea: replacing the FIR filter
by an IIR low-pass Butterworth filter whose cut-off frequency
is chosen to properly downsample the signal. However, this
filter still introduces phase distorsions.

In 2013, the composite MSE consisted in using the 7 se-
quences that can be defined after the decimation step [24]:

Z c¢SE(z,,7,m,r) 6)
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cMSE(zy, Tmaz, m,T) =

where ¢SE(z,,7,m,r) = 137 | SE (y,(:), 1,m, r) corre-
sponds to the average of the sample entropies computed on the

T sequences obtained from the filtering and the decimation.
Averaging reduces the variance of the estimated sample en-
tropy values. Moreover, using (5), (6) can be rewritten as:
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In [4], what is called ”short-term MSE” is also described by
(7). It amounts to computing the log of geometric means.
The refined composite multiscale entropy (rcMSE) proposed
in [25] rather consists in computing the log of the means:
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Note that the geometric mean is less sensitive than the arith-
metic mean to the highest values of a set.
In the modified MSE [24], the averaging filter is still applied.
Instead of decimating the filter output, the sample entropies
are directly computed on y. According to the authors, this has
the advantage of increasing the number of vector pairs.
The concept of multiscale was also extended to other entropy
metrics such as the permutation entropy [2]. This led to the
family of multiscale permutation entropies [21] which includes
the refined composite multiscale permutation entropy [14], the
improved multiscale permutation entropy [1], the multiscale
fractional-order permutation entropy and its weighted version
[6] or the fractional multiscale phase permutation entropy
[23]. Starting from the fuzzy entropy [7], the multiscale fuzzy
sample entropy was derived as well as the composite and

1
Tmax P

(O]

Tmax

refined composite multiscale fuzzy entropy [27]. In 2015, the
generalized multiscale entropy was proposed in [9]. Instead of
computing the mean of the signal in the first step of the MSE
approach, a higher-order moment (for instance the variance)
is considered. When dealing with the variance, one obtains
the so-called MSEc2. As the length of CG series decreases
when the scale increases, the estimation of the sample entropy
may not be accurate. For this reason, the refined MSEo? was
proposed in [16], following the same methodology as in the
rcMSE. As for the solution proposed by Hu er al [12], it
is based on the decomposition of the signal into intrinsic
mode functions (IMFs) by using the multivariate empirical
mode decomposition (MEMD). As the MEMD essentially
acts as dyadic-filter banks, the authors suggest summing a
certain number of IMFs in order to get different sets of data
whose spectrum tends to exhibit lower and lower frequencies.
The number of IMFs that are considered corresponds to the
scale. Then, the SE is computed on each signal. This leads to
the adaptive multiscale entropy. In [17], the authors suggest
applying the CG procedure, where the sample average is
replaced with the median value. Then, the authors define the
corresponding sign time series. When the difference between
two consecutive samples is positive, the value is equal to 1.
Otherwise, it is equal to 0. As a consequence, the number of
possible patterns is finite and the authors use both the sample
entropy and the second entropy based on the sign time series.
This method is called multiscale symbolic entropy analysis.
In the hierarchical entropy [15], the signal is decomposed
into two sequences: the low-pass filtered one obtained by the
averaging filter and the high-pass filtered one obtained by the
difference filter. Then, each resulting sequence is decomposed
into two sequences: a low-pass and a high-pass one. This leads
to a “hierarchical” decomposition of the signal. Then, the SE
is computed for each component. In [5], the Bubble entropy
leads to time-shift multiscale bubble entropy.

III. DESIGNING A FILTERING STEP WELL SUITED TO
CARRY OUT A MULTISCALE ANALYSIS

A. Steps of the MSE to follow in order to avoid spectrum
overlap and distorsions induced by the filter phase

Given the above state of the art, we now propose our
contribution. It consists in deriving a MSE by taking care of
the filtering step. It operates with the following steps:

Step 1. Defining the maximum scale 7,4

Step 2. For each scale 7 € [2,..., Timaz), selecting a low-
pass causal FIR filter, with a linear phase or a null phase
and a normalized cutoff frequency that is smaller than %
This can be done by using the so-called window method for
a causal linear-phase FIR filter design or Remez algorithm.
An alternative is to design an IIR filter using the bilinear
transform and then to design a zero-phase linear filter: two
types of processing chains can be considered:

e The signal z,, is filtered by a filter whose real impulse
response is h,, leading to the signal g,. Then, the time-
reversed version g_,, is filtered by a filter whose impulse

response is still equal to h,. The output is denoted as r,.
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Figure 1. Evolution of the SE according to 7 for different choices of Af and Rs. white noise: —; pink noise: ——

Finally, r,, is time-reversed to get the filtered signal of interest,
denoted as y,,.
Let H(f) = |H(f)| exp (j®(f)) = H*(~f). one has:

(
)
)

G(f) = H(f)X(f)
R(f) = H(f)G(-f) ©
Y(f) = R(=f) = H())PX(f)

The Fourier transform of the impulse response of the equiva-
lent filter is Hoqu (f) = |Hegu ()] exp (®equ(f)) = [H(/)
It is hence a null-phase filter (4., (f) = 0) characterized by
| Hegu ()] = [H(F)2.

e The sequences z,, and z_,, are filtered by the same filter
whose impulse response is h,. This leads to two sequences
respectively denoted as g,, and 7,. The final output is equal
to g, + r—,. In that case, the Fourier transform of the output
is Y(f) = 2|H(f)|?cos (®(f)). It is a zero-phase filter if
®(f) € [0, 5[ in the pass band. As there is no guarantee this
is always the case, only the first strategy is considered. In
this case, the filter can be either FIR or IIR. For IIR, different

filter families exist such as the Butterworth filters whose order
can be large due to the constraint of maximally-flat magnitude
in the pass band and the Chebyshev filters known to exhibit
equiripple in the pass band (type I) or the stop band (type II).

The specifications of the low-pass filter frequency response
have to be defined. It consists in choosing the transition
bandwidth A f = f; — f, where f, and f, respectively denote
the normalized stop-band corner frequency and the normalized
pass-band corner frequency. For the window method and
Remez algorithm, f, and f, are defined as 5~ + Af/2. For
the null-phase filter, f, and fs are respectively defined as
% +1073 and f, + Af. Moreover, the maximum permissible
pass-band loss R, as well as the stop-band attenuation R,
have to be defined. We will see the influence of their choices
in section III-B.

Step 3. Computing the MSE (or one of its variants).
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B. Application on white noises and 1/ f process

In this section, we propose to follow the same methodology
as [8] and [22] by providing the way the entropy measure
evolves with the scale for white noises and 1/f noise. As
the approaches we propose depend on the specifications of
the low-pass filter, we propose to look at the way the curves
vary with one of the specification parameters. They will be
compared with the curves obtained the standard MSE [8].

In Fig. 1, N denotes the length of the impulse response for
the window method (1.b) and the Remez algorithm (1.c and
1.d) whereas it denotes the order of the type-II Chebyshev
filter for the null-phase filter structure (1.e and 1.f). In both
cases, the larger IV, the larger the computational cost. The
steps described in III-A are performed on 50 signals of length
30000. The results are then averaged to obtain the curves.
According to our simulations, when I, is modified for the
design of the IIR filter, it does not change much the shape of
the curve. For this reason, we do not present them in Fig. 1.
When R; is taken too small, the linear-phase or null-phase
low-pass filter with the normalized cutoff frequency smaller
than % do not filter the frequencies in the stop band enough.
Therefore, like the CG-based MSE, spectrum overlapping may
occur. The resulting evolution of the entropy measure tends to
the one obtained with the CG-based MSE. When the transition
bandwidth becomes too wide, the stop band becomes smaller.
Some frequencies in the transition band are not more or less
attenuated and the resulting entropy diverts from the SE. The
proposed results serve as reference curves for this new MSE
as the ones presented in [8] and in [22].

IV. CONCLUSIONS AND PERSPECTIVES

To replace the standard coarse graining step of the MSE
(or its variants) that induces aliasing, two linear-phase FIR
filters and a null-phase IIR filter have been used in our variant.
Following the same type of analysis as in [8] and [22], the
sample entropies of white noise and 1/f noise at different
scales are studied. As the parameter of the filters can be tuned
by practitioner, our simulations confirm that if the stop-band
ripple is too small or if the transition bandwidth of the filter
is too wide, the anti-aliasing properties of the filter become
lesser. As the FIR-filter order may be large, it may be less
relevant when the number of samples available is low and
we suggest using the null-phase filter structure. Our proposal,
based on a linear or zero phase filter, seems moderate from the
signal processing point of view, but the resulting MSE could
serve a large community of users.
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