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Abstract—In recent literature, the discrete Stockwell 
Transform (DST) for infinite length signals has been introduced 
along with its fast implementation. This method allows for low 
computational cost and enables processing of an infinite-length 
or large-size signal segment-by-segment while overcoming the 
boundary effects produced by conventional DST. The algorithm 
also preserves the absolute-reference phase, making it suitable 
for real-time signal processing. In this paper, we propose a new 
formulation of the discrete Orthogonal Stockwell Transform for 
infinite length signals. Based on the definition, we implement its 
fast algorithm using FFT. Our proposed scheme can process an 
infinite signal segment-by-segment, eliminating boundary 
effects and preserving the absolute-reference phase. Compared 
to the DST for infinite length signals, the DOST version 
significantly reduces computational complexity, making it more 
practical for real-time signal processing. 

Keywords—Infinite-length signals, the discrete Stockwell 
transforms, the discrete Orthogonal Stockwell transforms, real-
time signal processing 

I. INTRODUCTION 
The Stockwell Transform (ST [1]) is a time-frequency 

technique that was developed in 1996. It allows for the 
simultaneous representation of a temporal signal using both 
time and frequency variables. By combining the short-time 
Fourier transform and wavelet transforms, the ST provides a 
multi-scale time-frequency representation of a signal while 
also maintaining the absolute-reference phase information 
consistent with the Fourier phase of the signal. This feature, 
along with its easy-to-interpret time-frequency spectrum and 
its close connection to the Fourier transform, has made the ST 
a widely-used tool in geophysics, biomedicine, oceanology, 
and the energy industry [2-8]. 

However, due to the high redundancy in its time-frequency 
representation, computing the full ST is highly intensive.  
Variations of the discrete STs (DSTs), such as the discrete 
orthogonal ST (DOSTs, [9-11]) and the generalized discrete 
ST (GDST)[12-14], were developed to reduce the 
computational complexity as well as to preserve the absolute-
reference phase property.  

All the discrete STs found in literature are designed to 
process finite-length signals. However, in applications such as 
audio, medical, and radar signal processing, the signal length 
may be large or even infinite. As the signal length increases, 
so does the number of frequency samples required for 
computation. This can exceed computational memory and 
storage capacity, making it difficult to compute the ST for 
such signals in a reasonable amount of time. While it is 

possible to compute the ST segment-by-segment, doing so 
results in boundary effects that wrap around the two ends of 
each segment and can distort the interpretation of local signal 
behavior. To address this issue, we proposed new DST 
transforms for infinite-length signals in [23]. These transforms 
eliminate boundary effects and preserve absolute-referenced 
phase. Furthermore, they can be implemented efficiently with 
low computational complexity and reasonable time delay, 
meeting the real-time system design requirements. However, 
the information redundancy in the DST for the infinite-length 
signals is still high, causing intensive computation. 

Hence, in this paper, we present an extension of the 
discrete orthogonal Stockwell Transform (DOST) transform 
for infinite-length signals, with the aim of reducing 
information redundancy in the time-frequency representation 
and further increasing computational efficiency. The paper is 
organized as follows: In Section 2, we first derive the formula 
for the continuous ST of an infinitely sampled signal [23]. 
Then, we sample the time-frequency domain to formulate the 
DOST transform for an infinite-length signal. We also 
demonstrate that applying these formulae to periodic 
extensions of finite-length signals yields the conventional 
formulation of the DOST for finite-length signals [9-11]. 
Efficient numerical implementation of the infinite DOST is 
developed in Section 3. In Section 4, we provide numerical 
validation of our algorithm and analyze its computational 
complexities. Finally, we present further discussions and 
conclusions in Section 5. 

II. THE CONTINUOUS STOCKWELL TRANSFORM AND ITS 
DISCRETIZATIONS 

Mathematically, the continuous ST [1] for a continuous 
signal g(t) is defined as: 

S(τ, υ) = ∫ g(t)w(τ − t,σ)e−2πitυdt+∞
−∞                        (1) 

Here,  t  is the time variable, and υ  is the frequency 
variable. The window function w(t,σ)is localized at time τ, 
where σ = σ(𝜈𝜈)  is frequency-dependent and controls the 
window width. When the window function is Gaussian and 
σ = 1

|𝜈𝜈|, Equation (1) produces the conventional ST. We will 
show that discretizing the continuous ST spectrum will lead to 
the definition of the DST for both finite and infinite-length 
signals.  
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A. Sampling for ST Transform  
First, we sample the continuous signal  g(t)  with an 

impulse sampling function with a sampling interval T and 
obtain the infinitely sampled signal g′(t) 

g′(t) = ∑ g(t)+∞
n=−∞ δ(t − nT).                                 (2) 

Substituting g′(t) into Equation (1) gives the continuous 
ST spectrum of the sampled signal： 

S′(τ, υ) = � g′(t)w(τ − t,σ)e−2πitυdt
+∞

−∞
 

=  ∑ g(nT) ∙ w(τ − nT,σ)e−2πinTυ+∞
n=−∞                            (3) 

Here, both τ and υ are continuous variables. The function 
S′(τ, υ)  is periodic along the frequency variable υ  with a 
period of 1

T
. However, it is not necessarily periodic along the 

time variable τ. 

B. The DOST for Infinite-length Signals  
Similar to obtaining DST[23] through sampling, this paper 

employs another way to sample the continuous S-spectrum 
S′(τ, υ) and obtain the DOST. Let N = 2K. For every integer 
k ∈ [0, K] ， we select the following frequency sampling 
points: 

υk = �
k/(NT) k = 0,1,           
1/(2T) k = K               

�2k−1 + 2k−2�/(NT) k = 2. . . K − 1
 

For every given frequency sampling point  υk，the time 
sampling points are chosen as: 

τl = �
𝑙𝑙NT k = 0,1, K      
𝑙𝑙 N
2k−1

T k = 2. . K − 1    for 𝑙𝑙 ∈ [−∞,∞], 

Then sampling the continuous S-spectrum S′(τ, υ) at the 
sampling points (τ𝑙𝑙 , υk) gives 

S[𝑙𝑙, k] = S′(τ𝑙𝑙 , υk) 

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � g(nT) ∙ w(𝑙𝑙 ∙ NT− nT,σ)e−

2πink
N

+∞

n=−∞

k = 0,1

� g(nT) ∙ w(𝑙𝑙 ∙ NT − nT,σ)e−
2πin
2

+∞

n=−∞

k = K

� g(nT) ∙ w�𝑙𝑙 ∙ 2K−k+1T− nT,σ�e−
2πin�2k−1+2k−2�

N

+∞

n=−∞

k = 2. . . K− 1

 

=

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ � g[n] ∙ e−

2πink
N ∙ w[𝑙𝑙 ∙ N − n, k]

+∞

n=−∞

k = 0,1           

� g[n] ∙ e−
2πin
2 ∙ w[𝑙𝑙 ∙ N − n, k]

+∞

n=−∞

k = K              

� g[n] ∙ e−
2πin�2k−1+2k−2�

N ∙ w[𝑙𝑙 ∙ 2K−k+1 − n, k]
+∞

n=−∞

k = 2. . . K − 1

 

(6) 

To simplify Equation (6), we define the frequency band width 
β as:  

        β = � 1 k = 0,1, K      
2k−1 k = 2. . . K − 1

, 

the center frequency (i.e, the center of each frequency band) 
as  

        υ = �
k k = 0,1           

N/2 k = K              
3
2β k = 2 … K − 1

 

and the time indices for time sampling points as： 

    τ = � 𝑙𝑙 ∙ N k = 0,1, K      
 𝑙𝑙 ∙ 2K−k+1   k = 2 … K − 1

𝑙𝑙 ∈ [−∞,∞]. 

We can then rewrite Equation (6) as 

S[𝑙𝑙, k] = S[υ, β, τ] = ∑ g[n] ∙ e−
2πinυ
N ∙ w[τ − n, υ]+∞

n=−∞        (7) 

Using Equation (7), we define the DOST for an infinity-
length discrete time signal g[n]. 

C. The DOST for Finite-length Signals  
Similar to the conventional DST, for a given finite-length 

signal g[n] with support [0, N − 1]，we periodically extend 
the signal to the entire domain. Then the convolution operator 
is equivalent to a circular convolution:  

S[𝑙𝑙, k] = ∑ g[n] ∙ e−
2πinυ
N ∙ w[τ − n, k]N−1

n=0                      (8) 

Using FFT, we can design a fast algorithm to compute 
Equation (8): 

S[𝑙𝑙, k] = FFT−1 �FFT �∑ g[n] ∙ e−
2πinυ
N ∙ w[τ − n, k]N−1

n=0 �� 

If the window function satisfies FFT( w[n, k])  = 
Π
�−β2，

β
2−1�

(𝑚𝑚) , where ΠΩ(𝑚𝑚)  is the rectangular function 

defined as the following   

         ΠΩ(𝑚𝑚) = �1 𝑚𝑚 ∈ Ω + pN
0 𝑚𝑚 ∉ Ω + pN    

Then we obtain 

S[𝑙𝑙, k]  = FFT−1 �G[m + υ] ∙ Π
�−β2，

β
2−1�

(𝑚𝑚)��

τ

 

= � G[m + υ] ∙ Π
�−β2，

β
2−1�

(𝑚𝑚)e2πi
mτ
N

N−1

m=0

 

=

⎩
⎪
⎨

⎪
⎧

G[k] k = 0,1          
G[N/2] k = K             

� G[m + υ] ∙ e2πi
m∙𝑙𝑙
2k−1

β/2−1

m=−β/2

k = 2 … K − 1
 

= �
G[k] k = 0,1          

G[N/2] k = K             
IFFTβ�G�m + 3

2
β�� k = 2. . . K − 1

                             (8’) 

Equation (8’) is exactly the conventional DOST that has 
been used in the literature for finite-length signals.  

 

To summarize, we have formulated the DOST for both 
finite and infinite-length signals. While their algebraic 
formulations are similar, with one involving a sum from 0 to 
N-1 and the other involving an infinite sum from −∞ to ∞, 
both methods generate a discrete time-frequency spectrum of 
a discrete time signal. Nonetheless, they differ significantly in 
theory. 

The conventional DOST [10-12] uses circular 
convolution, which implicitly treats any finite-length signal as 
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a periodic signal. This results in the beginning of the signal is 
wrapped around the end, creating discontinuities at the 
intersections of the ends and producing boundary effects that 
distort the spectrum. On the other hand, the new DOST 
formulation involves a sum from −∞ to ∞ and is designed 
specifically to process infinite-length signals. Unlike the 
conventional DOST, the infinite-length DOST does not 
involve periodic extension and naturally eliminates boundary 
effects. 

When using the FFT to compute the conventional DOST 
spectrum, the average computational complexity increases 
with the signal size N and can quickly exceed the capabilities 
of an average computer. However, the definition of the DOST 
of infinite-length signals given by Equation (7) reveals that the 
total number of frequency sampling points K is independent 
of the signal size. Therefore, the computational complexity of 
each signal point remains constant throughout the entire signal 
processing. This characteristic is essential for a real-time 
system. 

   In the next section, we will present low-cost 
computational methods for accurately computing the DOST 
time-frequency spectrum of an infinite-length signal. 

III. THE DISCRETE ORTHOGONAL STOCKWELL 
TRANSFORM AND ITS FAST IMPLEMENTATION FOR INFINITE-

LENGTH SIGNALS  
Equations (6) and (7) reformulate the DOST for infinite-

length signals:   

S[𝑙𝑙, k] = S[υ,β, τ] = � g[n] ∙ e−
2πinυ
N ∙ w[τ − n, υ]

+∞

n=−∞

 

Like the DST, the DOST can be viewed as a process of 
frequency modulation  e− 2πinυN  followed by an FIR filter 
w[n,m].   

Thus, computing the DOST in Equation (6) is equivalent 
to filter a frequency modulated signal using a FIR filter of 
order N, similar to the DST proposed in [23]. This filtering 
can be realized efficiently in the frequency domain by 
partitioning the signal into overlapped segments of length 2N 
and then apply the Fourier transform on these segments.  

Unlike the DST, the DOST does not employ uniform time 
sampling for different center frequency υ. Therefore, different 
FFT lengths must be used for different center frequencies.   

Theorem 1: Given an N-length segment of an infinity signal, 
computation of the DOST for the segment with fixed 
frequency υ, bandwidth β and time sampling interval N/β，
can be simplified as computing 2β-point FFT and the sum of 
2N multiplications. 

Proof: 

S[𝑙𝑙, k] = S[υ, β, τ] = � g[n] ∙ e−
2πinυ
N ∙ w[τ − n, υ]

2N−1

n=0

 

= FFT−1 �FFT� � g[n] ∙ e−2πi
nυ
N ∙ w[τ − n, υ ]

2N−1

n=0

�� 

= FFT−1 �FFT��g[n] ∙ e−2πi
nυ
N �⊛ w[n, υ ]�� 

= FFT−1 �FFT �g[n] ∙ e−2πi
nυ
N � ∙ FFT(w[n, υ ])� 

=  FFT−1(G[m + 2υ] ∙ W[m, υ]) 

= � G[m + 2υ] ∙ W[m, υ] ∙ e2πi
mτ
2N

2N−1

m=0

 

Since τ = 𝑙𝑙 ∙ N
β
，𝑙𝑙 ∈ [0，1，2， … 2β − 1], then we have  

S[𝑙𝑙, k] = S[υ, β, τ] = � G[m + 2υ] ∙ W[m, υ] ∙ e2πi
m𝑙𝑙
2β

2N−1

m=0

 

= � � � G[m + 2nβ + 2υ] ∙ W[m + 2nβ, υ]
N/β−1

n=0

� ∙ e2πi
m𝑙𝑙
2β

2β−1

m=0

 

∎  

Theorem 1 can be used to compute the DOST for infinite-
length signals. For each signal segment of length N and each 
frequency, the DOST uses 2N multiplication and 2β-point 
FFT to compute,  given the time sampling period is N/β.  

 
Fig. 1.  The time-frequency representation given by the discrete 
orthogonal Stockwell-transform for an infinite-length signal: a) 
384 sample points of a non-stationary time signal whose frequency 
vary over time periodically; here, the sampling rate is 1Hz; b) the 
magnitude of the time-frequency spectrum of the portion of the 
signal as displayed in a) calculated by the infinite-length DOST; c) 
the magnitude of the time-frequency spectrum calculated by the 
finite-length DOST. 
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Fig. 2.  The window functions used in the DST for frequency indices 
8, 16, and 24. The support of the function is 256 and the center of 
the window is 𝜏𝜏 = 128. Note that we pad 256 zeros to the filter 
coefficients to form a filter B of length 512.  
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Based on Theorem 1, we can derive the fast algorithm to 
compute the DOST of an infinite-length signal segment-by-
segment:  
Algorithm 1. Real-time Implementation for the DOST of An Infinite-
length Signal 

1) For a fixed center frequency υ，partition the frequency 
modulated signal b[n] into small segments. The k-th 
segment is  

𝑏𝑏𝑘𝑘[n] =  b[kN + n] = g[kN + n] ∙ e−2πi
(kN+n)υ

N , 

For simplicity, we denote  
𝑏𝑏𝑘𝑘[n] = 𝑔𝑔𝑘𝑘[n]e−2πi

nυ
N  , 

where 𝑔𝑔𝑘𝑘[n] ≡ g[kN + n], 𝑛𝑛 ∈ [0，𝑁𝑁 − 1] 

2) Combine two segments 𝑏𝑏𝑘𝑘−1[n] and 𝑏𝑏𝑘𝑘[n] to form a data 
block B of length 2N: 

  B = �𝑔𝑔𝑘𝑘−1[n]e−2πi
nυ
N ,𝑛𝑛 = 0 …𝑁𝑁 − 1, 

𝑔𝑔𝑘𝑘[n]e−2πi
nυ
N ,𝑛𝑛 = 0. . .𝑁𝑁 − 1� 

= �g[(k − 1)N + n]e−2πi
nυ
N  ,𝑛𝑛 = 0. .2𝑁𝑁 − 1� 

3) For a fixed center frequency υ , zero pad the filter 
coefficients {a[⋅]}, 𝑛𝑛 ∈ [0，𝑁𝑁 − 1] by adding N zeros to 
form a sequence A of length 2N: 

A = {a[0], a[1], …  a[N − 1], 0,0,0 … 0} 

4) Compute 2N-point FFT of A and B 
B� ≡ FFT(B) = G(j + 2υ) 

A� ≡ FFT(A) = � a[n] ∙ e−2πi
nj
2N

2𝑁𝑁−1

𝑛𝑛=0
 

= � a[n] ∙ e−2πi
n(j/2)
N

𝑁𝑁−1

𝑛𝑛=0
 

5) Then compute 

AB� [j] = � B�[j + 2nβ] ∙ A�[j + 2nβ]
N/β−1

n=0

 

Compute C =  IFFT2β(AB� )  using 2β − point IFFT.  The 
second half of the resulting signal C is the DOST for 
infinite-length signals：S[𝑙𝑙, k] = S[υ, β, τ]  , where υ  is a 
fixed center frequency and 𝑙𝑙 covers all the time points 
in the k-th sampling time interval in {kN + 𝑙𝑙 𝑁𝑁 β⁄ , 𝑙𝑙 ∈
[0, β − 1]}. 

6) Repeat Steps 3-6 to obtain S[𝑙𝑙, m]  for all center 
frequency points υ = υ[m]  and finish the computation 
for the k-th signal segment. 

7) Repeat Steps 1-7 to obtain the DOST for different 
segments of an infinite length signal. 

 

Similar to the DST, in order to compute the DOST with 
the window function centered at zero as shown in Equation 
(6), we need to recalibrate the results. For the window function
：w′[n, m ] = w[n − τ, m ]，the recalibrated DST is given 
as S′[𝑙𝑙, m] = S[𝑙𝑙 − τ, m]. 

 

IV. NUMERICAL PERFORMANCE EVALUATIONS FOR THE 
DOST OF INFINITE-LENGTH SIGNALS 

Fig. 1 compares the performance of the infinite-length and 
finite-length DOST for an infinite-length signal defined as   

cos �2π� 24
256t+4cos�2π

0.6
256t+2.4π���, 

whose frequency changes periodically over time. Fig. 1a) 
shows a 384 samples points of the infinite-length signal for 
t ∈ [0s, 383s]. The sampling rate is 1 Hz. In Fig. 1b), we 
compute the DOST for the infinite-length signal segment-by-
segment using the proposed Algorithm 1. Each segment is of 
length 256. The magnitude of the resulting time-frequency 
spectrum of the signal as displayed in Fig. 1b). The window 
functions used are similar to the Gaussian functions and have 
compact support, centered at τ = 128.  The window width 
decreases as the frequency value increases. For each signal 
segment of length N=256, the frequency sampling interval 
increases, and the temporal sampling interval decreases as the 
center frequency value increases. Hence for different 
frequency bands, the lengths of the FFTs used in the DOST 
are different: those for higher frequency bands are longer and 
those for lower frequency bands are shorter. Fig. 1c) shows 
the result calculated by the conventional finite-length DOST.  
The signal segmentation, the window function and the other 
parameters are the same as used in Fig. 1b). The center of the 
window is zero. As shown in Fig. 1c), obvious border effect 
can be observed at the intersection of the two segments. 

Note that in order to be comparable, the value of the DOST 
sampled at one time-frequency point is displayed as a sub-
matrix whose column and row sizes are determined by 
corresponding sampling time intervals and frequency 
sampling intervals, respectively. The intensity values in gray 
show the magnitudes of the DOST spectra.  

The major difference between the finite-length and 
infinite-length DOST is that the infinite DOST maintains the 
absolute-reference Fourier phase and hence it removes the 
border artifacts at the intersections of two segments, while the 
finite-length DOST does not.  

The computational complexity of the DOST for an 
infinite-length signal is only influenced by the length of the 
signal segment needed to be processed. For a signal segment 
of length N, we need less than 8N log2 N + 2N + 6 complex 
multiplications. Hence, the average number of complex 
operations for each sampling point is 8log2 N + 2 . In our 
example, the length of the segment is N = 256, computing the 
DOST for each time point needs 42 complex multiplications, 
compared to 2598 for the DST. And this number stays the 
same no matter how long the signal to be processed is. Hence 
it is feasible to realize the fast DOST computation in real-time 
systems. 

V. DISCUSSIONS AND CONCLUSIONS  
By sampling the time-frequency domain of the continuous 

Stockwell transform, we derive the new formulation of the 
DOST for infinite-length signals. We show that the 
conventional ST for finite-length signals is a special case in 
the formulation.  The infinite-length DOST proposed in this 
paper not only preserves absolute-reference phase, but also 
eliminates boundary effects. It allows flexible designs of 
computational schemes that are feasible for real-time 
applications.  
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We also revealed that the conventional definition of the 
DOST suffers from boundary wrapping effects at the two ends 
because it implicitly treats a signal of finite-length as a 
periodically extended signal. This may cause distortion and 
misinterpretation of the time-frequency spectrum. On the 
other hand, the infinite-length DOST formulation is defined to 
process any infinite-length signals, periodic or non-periodic, 
without boundary effects occurred in the spectrum. 

When processing infinitely long or large size signals, it is 
impractical to process the signal as a whole. Normally 
segment-by-segment implementation is more practical. Due to 
boundary effects of the finite-length DOST, however, spectra 
cannot be accurately obtained at the intersections of adjacent 
segments. Accurate spectrum can be only computed by 
processing the whole signal. For a signal of length L, the total 
computational complexity of the conventional DOST is 
O(2LlogL). That is, the average computational complexity for 
each data point is O(2logL). As the signal length increases, the 
computation requirement becomes possible beyond real-time 
processing capability of any processor.  

In the proposed segment-by-segment implementations of 
the infinite-length DOST, we utilize the FFT-based FIR filters 
to compute the spectrum of each segment from two adjacent 
segments. The resulting overall spectrum is precisely 
equivalent to the spectrum given by the definitions of the 
infinite-length DOST. If the length of each segment is N, the 
average computational complexity for each data point is 
O( 8 log N ). These properties are critical for real-time 
applications. 

Even though our algorithm has one data block time delay, 
this is considered reasonable in many real-time applications, 
such as telecommunication, radar and GPS systems.  

In general, FFT of a power of 2 points is computationally 
more efficient and most convenient to implement in both 
software and hardware. Hence the proposed numerical 
implementations are based on the segment length of a power 
of 2. However, we can further extend our work to utilize 
numerous recent developments in fast Fourier transforms [20, 
21] to handle arbitrary segment lengths or sparse signals. In 
the future, we will integrate the theoretical framework of the 
GDST [13, 22] to generalize the proposed transforms for 
infinite-length signals. This work will enable us to flexibly 
adjust the width of window functions and select optimal 
frequency resolutions adaptive to a specific signal. With that, 
we aim to further reduce computational complexity and make 
it more valuable for time-frequency analysis in applications 
arisen from medicine, remote sensing, and engineering.  
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