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Abstract—Multifractal analysis has become an important
procedure for estimating local regularities in experimental
data. However, while univariate multifractal analysis is well-
established, how cross-dependencies of regularities fluctuate
amongst signal components is less often addressed. Further,
multifractal analysis is now thoroughly outlined for fields defined
everywhere on raster-like data structures. Still, it is less well
suited for analyzing processes that exist only on restricted and
partial supports, possibly with heterogeneous densities. These two
issues, critical for a relevant application of multifractal analysis to
geospatial data, are addressed here by proposing an original point
process-oriented bivariate multifractal analysis. The relevance of
the proposed procedure is illustrated at work on synthetic data
constructed by combining homogenous and non-homogeneous
point processes with multifractal textures. Illustration on real-
world geospatial data is also provided.

Index Terms—Point processes, bivariate multifractal analysis,
regularity cross-dependencies, geospatial data

I. INTRODUCTION
Context. In many applications of geography and urban sci-
ence, several phenomena are measured and analyzed jointly
in several points of the same territory, taking the form of
multivariate data. Furthermore, in such investigations, the
support or the spatial distribution of the data, i.e., the loca-
tions where the phenomena are measured, is often neither a
homogeneous compact set nor a 2D raster grid. Hence, their
modeling often entails (two-dimensional) point processes with
possibly non-homogenous densities. Finally, the concept of
scale-free spatial dynamics and thus of multifractal analysis
and modeling has already been put forward as relevant for
urban analysis [1]–[5]. Nevertheless, the above three aspects of
geographical data - multidimensionality, cross-multifractality,
and non-homogeneity - have rarely been studied jointly, an
issue at the heart of the present work.
Related work. Multifractal analysis, which describes the prop-
erties of the fluctuations of local regularity in time or space,
is a well-known signal processing tool successfully tested
in numerous real-world applications [6]. However, it mainly

remained univariate in spirit: components of the data were ana-
lyzed independently, one after the other. The extension of mul-
tifractal analysis to bivariate settings was introduced in physics
in [7] and formalized mathematically in [8]. Recently, a
theoretically well-grounded and practically robust multivariate
multifractal framework has been devised [9]–[11]. It permits
the assessment of cross-dependencies in fluctuations of local
regularities amongst the different components of the data [12].
The proposed framework applies only to classical images so
far, that is, to 2D raster grids that are everywhere well-defined.
Independently, spatial statistical analysis [13] considers many
geospatial datasets to be marked point processes that can be
accordingly characterized by their (“point") locations and one
or more attached quantities or “marks" (e.g., demographic
variables). Finally, in geographical data science, an original
framework for univariate multifractal analysis was developed
[2]–[4]. It relies on the design of specific multiscale quantities,
the essential ingredients for scale-free analysis, which are
customized to be beneficial for studying non-homogeneous
point processes.
Goals, contributions, and outline. Building upon this re-
search, the present work aims to construct an original bivariate
multifractal analysis framework that is well-suited to the
analysis of non-homogeneous point patterns and to show its
relevance to the analysis of actual geospatial data. To that
end, Section II briefly recalls classical multifractal analyses.
Section III develops the core contribution of this article: It
introduces a novel multiscale quantity suited to point processes
and defines local bivariate multifractal analysis. The relevance
of the proposed tool is illustrated on synthetic data constructed
from multifractal measures restricted to three types of point
patterns: a homogeneous grid and two non-homogenous Sier-
pinski carpets (see Section IV). Finally, the potential benefits
of using such tools on real-world geospatial data are assessed
in Section V. The underlying computational methodology -
devised by the authors - is also available as an open-source
python package LomPy, which can be accessed at [14].
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II. CLASSICAL MULTIFRACTAL ANALYSIS
Multifractal analysis characterizes the fluctuations of local

regularity in time or space of a process 𝜅. Different pointwise
regularity exponents can be used, the most widespread being
the Hölder exponent ℎ(𝑥0), which is relevant for locally
bounded processes. It is defined as the largest 𝛼 such that
there exist, in a neighborhood of 𝑥0, a constant 𝐶 > 0 and
a polynomial 𝑃 (of order less than 𝛼) satisfying |𝜅(𝑥0 − 𝑟) −
𝑃 (𝑥0 − 𝑟)| < 𝐶|𝑟|𝛼 .
A. Multifractal spectrum and formalism

Based on a local regularity measure, multifractal analysis
provides global and geometrical information related to the
structure of the fluctuations in local regularity ℎ(𝑥). This infor-
mation is classically shown via the multifractal spectrum 𝐷(ℎ),
defined as the collection of Hausdorff dimensions (dim𝐻 ) of
the sets of points 𝑥, where ℎ(𝑥) takes the value ℎ:

𝐷(ℎ) = dim𝐻
{

𝑥 such thatℎ(𝑥) = ℎ
}

.
The practical estimation of the multifractal spectrum relies

on studying the evolution along scales of the statistics of well-
chosen multiscale quantities. Defined initially as increments,
it has abundantly been shown that wavelet coefficients [15] or
some non-linear transformations of these [16] constitute more
suitable choices for multifractal analysis.

Let 𝑇 (𝑥, 𝑟) denote the multiscale quantities computed at
location 𝑥 and scale 𝑟. A process 𝜅 is said to possess scale-
free characteristics if, for some statistical orders 𝑞, the space
averages of |𝑇 (𝑥, 𝑟)|𝑞 in a fixed scale display power law
behaviors as functions of scale 𝑟

𝑆𝑞(𝑟) = 𝔼{|𝑇 (𝑥, 𝑟)|𝑞} = lim
𝑁→+∞

𝑁
∑

𝑥=1
|𝑇 (𝑥, 𝑟)|𝑞 ∼ 𝐹𝑞|𝑟|

𝜁𝑞

where 𝑁 is the total number of points 𝑥 that 𝑇 (𝑥, 𝑟) is
computed, and 𝔼 refers to the global space average. The
scaling exponents 𝜁𝑞 are related by a Legendre transform to
the multifractal spectrum 𝐷(ℎ) ≤ min𝑞(𝑞𝐻−𝜁𝑞), with equality
for large classes of models.

When 𝜁𝑞 is smooth around 0, a Taylor expansion of 𝜁𝑞 =
∑

𝑝≤1 𝑐𝑝
𝑞𝑝

𝑝! shows that the cumulants of the logarithm of the
multiscale quantities behave linearly with respect to scales 𝑟,
yielding for the two first orders:
𝐶1(𝑟) = 𝔼{𝑙𝑜𝑔|𝑇 (𝑥, 𝑟)|} = 𝑐1 log(|𝑟|) + 𝑑1
𝐶2(𝑟) = 𝔼{

(

𝑙𝑜𝑔|𝑇 (𝑥, 𝑟)| − 𝐶1(𝑟)
)2} = −𝑐2 log(|𝑟|) + 𝑑2.

This provides practitioners with a quadratic approximation
of the multifractal spectrum around its maximum: 𝐷(ℎ) ∼
2 − (ℎ−𝑐1)2

2𝑐2
, which shows that 𝑐1 encodes the location of the

maximum of the spectrum, and 𝑐2 > 0 its width. Therefore,
(𝑐1, 𝑐2) are often considered to be a relevant summary of
the multifractal properties of the data. Often, in applications
and for historical reasons, the pair (𝐻, 𝑐2) is used instead
of (𝑐1, 𝑐2), where the Hurst or self-similarity exponent 𝐻 ≡
𝜁 (2)∕2 is practically very close to 𝑐1 as 𝐻 ≃ 𝑐1 − 𝑐2 and
𝑐2 ≪ 𝑐1 (𝑐1 can be interpreted as the almost everywhere
regularity of the process).

B. Bivariate extension
In a bivariate setting, local regularities are quantified in-

dependently for each component of the data, resulting in a
vector of bivariate measure of local regularity: (ℎ1(𝑥), ℎ2(𝑥)).The corresponding bivariate multifractal spectrum is
𝐷(ℎ1, ℎ2) = dim𝐻

{

𝑥 such that (ℎ1(𝑥), ℎ2(𝑥)) = (ℎ1, ℎ2)
}

.
The overall shape of 𝐷(ℎ1, ℎ2) provides information on the
multifractality of each component via the two pairs of univari-
ate parameters (𝐻 𝑖, 𝑐𝑖2), 𝑖 = 1, 2 as well as on the cross mul-
tifractality. Several quantities were proposed to quantify the
cross-multifractality, e.g., [9]–[11]. We define in Section III a
version of those quantities in the context of point processes.
III. LOCAL AND BIVARIATE MULTIFRACTAL ANALYSIS FOR

2D POINT PROCESSES
The targeted extension of the standard multifractal analysis

has two challenges to address. First, it must overcome the
obstacle of non-homogenous point densities. Second, it is to
accurately estimate fractal and multifractal parameters and
their correlations on the local level, i.e. on neighborhoods of
arbitrary size smaller than the extent of the observed 2D field.
A. Multiscale quantity and local weighting function

Let us start by considering the multiscale quantity defined
as the average of pairwise increments of the process 𝜅(𝑥) =
{𝜅1(𝑥), 𝜅2(𝑥)}, i.e., in a bivariate setting with 𝑖 = 1, 2,

𝑃 𝑖(𝑥, 𝑟) = 1
𝑁 𝑖(𝑥, 𝑟)

∑

𝑥′, 𝑑𝑥,𝑥′≤𝑟
𝜅𝑖(𝑥) − 𝜅𝑖(𝑥′). (1)

and where 𝑁 𝑖(𝑥, 𝑟) is the number of points in a ball of radius
𝑟, centered on 𝑥 and 𝑑𝑥,𝑥′ is the Euclidean distance. A direct
adaptation of the wavelet p-leaders [16] yields the following
quantities

𝑄𝑖(𝑥, 𝑟) =
∑

𝑥′, 𝑑𝑥,𝑥′≤𝑟
𝑟′<𝑟

(|𝑃 𝑖(𝑥′, 𝑟′)|𝑝( 𝑟
𝑟′
)𝑑)1∕𝑝. (2)

where the sum of 𝑟′ is taken on a geometric sequence of
scales. To perform a local analysis, we first define a local
neighborhood 𝐿 larger than the radius 𝑟. Second, we introduce
a homogenous raster of arbitrary grid size 𝑙 with points 𝑥𝑔 ,
which will serve as the focal points for local estimations.
Moving on, with 𝑇 𝑖(𝑥, 𝑟) standing for each of the multiscale
quantities 𝑃 𝑖(𝑥, 𝑟) and 𝑄𝑖(𝑥, 𝑟), we compute cumulants of the
logarithm of the variables {𝑇 1(𝑥, 𝑟), 𝑇 2(𝑥, 𝑟)} weighted by the
distance between a chosen estimation site 𝑥𝑔 and the locations
of the original point process 𝑥. The first and second order log-
cumulants read, with 𝑖 = 1, 2:

𝐶 𝑖
1(𝑥𝑔 , 𝑟) =

∑

𝑥𝑤𝑥𝑔 ,𝑥 log |𝑇
𝑖(𝑥, 𝑟)| (3)

𝐶 𝑖
2(𝑥𝑔 , 𝑟) =

∑

𝑥𝑤𝑥𝑔 ,𝑥
(

log |𝑇 𝑖(𝑥, 𝑟)| − 𝐶 𝑖
1(𝑥𝑔 , 𝑟)

)2 . (4)
The weights are defined as 𝑤𝑥𝑔 ,𝑥 = 𝑓 (||𝑥𝑔 − 𝑥||∕𝐿), with

𝑓 (𝑥) = 1 if ||𝑥|| < 1 and 0 otherwise, i.e., a uniform kernel.
The weights are normalized so that ∑𝑤𝑥𝑔 ,𝑥 = 1. By principle,
estimation is restricted to focal points where 𝑁𝑥𝑔 (

√

2𝑙) ≠ 0.
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B. Local multifractal analysis
In the following, 𝐶 𝑖

1 and 𝜌𝑠𝑠(𝑥𝑔 , 𝑟) will be computed with the
multiscale coefficient 𝑃 𝑖(𝑥, 𝑟) whilst 𝐶 𝑖

2 and 𝜌𝑚𝑓 (𝑥𝑔 , 𝑟) with
the wavelet p-leader 𝑄𝑖(𝑥, 𝑟). Note that in a bivariate context,
the two processes (𝑇 1(𝑥, 𝑟) and 𝑇 2(𝑥, 𝑟)) under analysis must
reside on - or be antecedently projected to - a common set
of points. To perform the local multifractal analysis, we need
first to assess the local scaling for each component 𝑖 = 1, 2:

𝐶 𝑖
1(𝑥𝑔 , 𝑟) ∼ 𝑐𝑖1(𝑥𝑔) log(|𝑟|) + 𝑑𝑖1(𝑥𝑔)

𝐶 𝑖
2(𝑥𝑔 , 𝑟) ∼ −𝑐𝑖2(𝑥𝑔) log(|𝑟|) + 𝑑𝑖2(𝑥𝑔) (5)

This provides the local univariate multifractal analysis through
the summary (𝑐𝑖1, 𝑐

𝑖
2) for each component 𝑖. For the bivari-

ate extension, to assess classical cross-correlation, we define
the classical cross-coherence function of 𝑟, with 𝑇

𝑖
(𝑥, 𝑟) =

∑

𝑥𝑤𝑔,𝑒𝑇 𝑖(𝑥, 𝑟), as:
𝜌𝑠𝑠(𝑥𝑔 , 𝑟) =

∑

𝑥 𝑤𝑥𝑔 ,𝑥𝑇
1(𝑥,𝑟)𝑇 2(𝑥,𝑟)−𝑇

1
(𝑥,𝑟)𝑇

2
(𝑥,𝑟)

√

(

∑

𝑥 𝑤𝑥𝑔 ,𝑥𝑇
1(𝑥,𝑟)2

)(

∑

𝑥 𝑤𝑥𝑔 ,𝑥𝑇
2(𝑥,𝑟)2

)

(6)

In addition, following [9]–[11], to determine cross multifrac-
tality at the local level, we compute a multifractal coherence
function of 𝑟:

𝜌𝑚𝑓 (𝑥𝑔 , 𝑟) =
𝐶1,2
1 (𝑥𝑔 ,𝑟)

√

𝐶1
2 (𝑥𝑔 , 𝑟)𝐶

2
2 (𝑥𝑔 , 𝑟)

. (7)

with
𝐶1,2
1 (𝑥𝑔 , 𝑟) =

∑

𝑥
𝑤𝑥𝑔 ,𝑥 log |𝑇

1(𝑥, 𝑟)| log |𝑇 2(𝑥, 𝑟)|

− 𝐶1
1 (𝑥𝑔 , 𝑟)𝐶

2
1 (𝑥𝑔 , 𝑟) (8)

Analogously to the local scaling functions of the univariate
option, these quantities are evaluated at every estimation site
𝑥𝑔 for consecutive radii 𝑟. Specifically, 𝜌𝑠𝑠 measures a collec-
tion of scale-dependent local Pearson correlation coefficients
amongst components of the data. Additionally, 𝜌𝑚𝑓 quantifies
the cross-dependencies in the fluctuations of local regularities
amongst components. When 𝜌𝑚𝑓 goes to 1, locally around a
location, this indicates that both components are locally and
jointly irregular and bursty. Finally, to evaluate global scaling
characteristics, sums are performed across the sites 𝑥𝑔:

𝐶 𝑖
1(𝑟) =

1
𝑁𝑥𝑔

∑

𝑥𝑔

𝐶 𝑖
1(𝑥𝑔 , 𝑟) ∼ 𝑐𝑖1 log(|𝑟|) + 𝑑𝑖1

𝐶 𝑖
2(𝑟) =

1
𝑁𝑥𝑔

∑

𝑥𝑔

𝐶 𝑖
2(𝑥𝑔 , 𝑟) ∼ −𝑐𝑖2 log(|𝑟|) + 𝑑𝑖2. (9)

IV. RESULTS ON THREE DISTINCT POINT DISTRIBUTIONS
The aim of this section is twofold: first, to test if the above

local multifractal analysis can recover globally prescribed
multifractal parameters, and second, to validate how far local
multifractal estimations depend on their underlying spatial
point distributions.
A. Construction of non-homogenous bivariate point processes

Two essential steps are required to construct the bivariate
marked point processes of interest here.
Multifractal random walk. First, numerical simulations are
carried out with the help of a so-called multifractal random
walk (MRW) [17], [18]. MRW is a well-known multiplicative

Fig. 1. The bivariate MRW process on a 2048𝑥2048 grid with parameters
(𝐻1,𝐻2, 𝑐12 , 𝑐

2
2 ) = (0.7, 0.3, 0.05, 0.025), superposed on a homogenous raster

grid HG (left), and on two non-homogeneous Sierpinski carpets: S1 (center)
and S2 (right). The top row (a) shows the first (𝐻1, 𝑐12 ) the bottom row (b)
the second (𝐻2, 𝑐22 ) component.
cascade process whose multifractal properties are those of the
multiplicative log-normal cascade of Mandelbrot.

The two-dimensional bivariate MRW field is obtained as
[19], [20]

𝑚 = 1, 2, 𝑋𝑚(𝑥) = 𝐺𝑚(𝑥)𝑒𝜔𝑚(𝑥) (10)
where x are cartesian coordinates and 𝐺(𝑥) = {𝐺1(𝑥), 𝐺2(𝑥)},
𝜔(𝑥) = {𝜔1(𝑥), 𝜔2(𝑥)} are two independent pairs of stochastic
processes with predefined covariance functions. 𝐺(𝑥) is de-
lineated as a 2D fractional Gaussian noise while the 𝜔(𝑥)
process is defined via 2×2 cross-covariance functions, to
motivate multifractality in the spatial statistics [19]. Detailed
expressions of the covariance functions can be found in [19],
[20]. The MRW is then defined as a fractional integration of
order one of 𝑋𝑚(𝑥). For the present work, it suffices to know
that the self-similar cross-coherence function 𝜌𝑠𝑠(𝑥𝑔 , 𝑟) can be
interpreted as the correlation 𝜌𝐺 between the two processes
𝐺1(𝑥) and 𝐺2(𝑥). At the same time, 𝜌𝑚𝑓 (𝑥𝑔 , 𝑟) is defined as
the combination of the two correlations 𝜌𝐺 and 𝜌𝜔.
A mono- and multifractal point process. Secondly, to
further illustrate general applicability that is valid for a wide
range of 2D distributions, we construct two non-homogenous
Sierpinski carpets - hereafter referred to as S1 and S2 -
using the IFS fractal generator “GenFrac” [21]. Thereby, we
deploy a single (S1, 𝑑0 = 1.76) and then four different (S2,
𝑑0 = 1.56) reduction factors to obtain a mono- and multi-
fractal structure, respectively, with various local dimensions
𝑑0 = − log(𝑁𝑟)∕ log(𝑟). As our approach may be relevant for
research on geographical systems, it is interesting to analyze
such distinct distributions: S1 is characterized by a relatively
low (e.g., urban centers) and S2 by a high variation in point
densities (e.g., suburban or rural areas).

For this paper, we generate ten realizations of an MRW
(𝑁 = 2048) [19] with parameters 𝐻 𝑖 and 𝑐𝑖2 using eq. 10.
Going on, the MRW image - residing on a homogenous grid
support (HG) - is defined as a marked point process with
spatial positions in [0, 𝑁 − 1]2. Moreover, the MRW values
(“marks") are superposed on the different point patterns S1 and
S2 at the respective rounded point location of their centroids.
We obtain six marked point processes Γ𝑖,𝑗 = 𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝜅𝑖,𝑗 ,
𝑖 = 1, 2 (bivariate MRW) and 𝑗 = 1, 2, 3 (supports HG, S1, S2).
Figure 1 shows their support structure and the assigned MRW
“mark" generated with 𝐻1 = 0.7, 𝐻2 = 0.3, and 𝑐12 = 0.05,
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Fig. 2. (a, b) Univariate analysis. 𝑐1(𝑥𝑔) (eq. 3 and 5) obtained on HG (left),
S1 (middle), and S2 (right). The parameters used to generate the MRW process
are 𝐻1 = 0.7, 𝑐12 = 0.05 (a) and 𝐻2 = 0.3, 𝑐22 = 0.025 (b). (c) Bivariate
analysis. Results for the local cross-correlation coefficients 𝜌𝑠𝑠(𝑥𝑔 , 𝑟) (eq. 6).
𝑐22 = 0.025. Note that, mathematically, restricting an irregular
process, such as increments of an MRW on a fractal set, can be
ill-defined. However, this problem does not arise here because
modeling is performed at a finite scale.
B. Performance assessment

For this analysis, the fourteen observed scales 𝑟 are loga-
rithmically spaced between 𝑟 = 24 and 28 and 𝐿 = 280𝑝𝑥.
Increasing the size of the local neighborhood 𝐿 to reach
the full image resolution (2048𝑥2048) would yield results
equivalent to that of the global analysis defined in eq. 9. Note
that all results in this section are obtained as the mean across
ten MRW realizations. Let us start by inspecting the analysis
results of the two MRW fields independently. Figure 2 (a,b)
displays the slope 𝑐1(𝑥𝑔) of the fit for cumulant one 𝐶 𝑖

1(𝑥𝑔 , 𝑟)for every estimation site 𝑥𝑔 . What stands out is the rather
distinct color range of the two rows: brighter green color or
higher exponents 𝑐1(𝑥𝑔) dominating the top, and darker red
patches, thus lower 𝑐1(𝑥𝑔) values at the bottom. This indicates

Fig. 3. (a, b) Univariate analysis. Analysis results for 𝑐2(𝑥𝑔) (eq. 4 and 5)
on the HG (left), S1 (middle), and S2 (right) support. Prescribed parameters
are 𝐻1 = 0.7, 𝑐12 = 0.05 (a) and 𝐻2 = 0.3, 𝑐22 = 0.025 (b). (c) Bivariate
analysis. Results for 𝜌𝑚𝑓 (𝑥𝑔 , 𝑟) (eq. 7) estimations.

that globally assigned 𝐻 exponents (𝐻1 = 0.7, 𝐻2 = 0.3) can
also be retraced locally. Figure 3 reveals similar tendencies,
whereby lighter orange colors or higher intermittency (𝑐2(𝑥𝑔))dominates examples of the top row. Note that the appearance
of these images can be perceived as rather uniform. MRW is an
intermittent but statistically homogeneous field; therefore, we
do not expect significant fluctuations in the local estimations of
𝐻 𝑖 and 𝑐𝑖2. The followings assess estimation performance for
the different multifractal parameters separately: (i.) In the case
of 𝑐1(𝑥𝑔), local regression quality is very good for all analyzed
point processes: The coefficient of determination 𝑅2 remains
above 0.98 for all estimation sites on average. Moreover, in
Figure 4, the histograms of the three 𝑐1(𝑥𝑔) estimations (HG,
S1, S2) are layered upon one another and peak at the prescribed
𝐻 𝑖, signaling that results do not depend markedly on the
supports. (ii.) Although the estimation quality degrades for
𝑐2(𝑥𝑔), in the case of HG and S1, the derived values oscillate
around the predefined 𝑐22 in Figure 4.b. It is solely for the rather
extreme spatial distribution of S2 that results are somewhat
skewed, and the intermittency of the MRW is overestimated.
(iii.) Finally, cross-correlation coefficients in Figure 2.c and
Figure 3.c (mean value across radii 𝑟) also confirm that local
results are in accordance with predefined parameters: Values
of the classical cross-correlation function using the multi-
resolution coefficient 𝑇 𝑖(𝑥, 𝑟) fluctuate in the close vicinity
of 𝜌𝑠𝑠 = −0.3 and that of the multifractal cross-dependency
- obtained with the help of 𝑄𝑖(𝑥, 𝑟) - around the prescribed
𝜌𝑚𝑓 = 0.5. Similar to the univariate case, bivariate estimations
also appear largely independent of the support in Figure 4.c,
where the three respective histograms are positioned closely.

Fig. 4. In all subfigures, results (mean value across ten MRW realizations)
are obtained on the three supports, HG (blue), S1 (black), S2 (grey), and
the two MRW components (▪ and ∙). The predefined MRW parameters are
indicated in red (𝑖 = 1) and orange (𝑖 = 2) colors in the first two columns. The
top row shows the histogram of the local scaling 𝑐1(𝑥𝑔) (a) and 𝑐2(𝑥𝑔) (b)
according to eq. 5. In subfigure (c), the histogram of local cross-correlations
(mean value across all available scales) 𝜌𝑠𝑠(𝑥𝑔 , 𝑟) (eq. 6, the prescribed value
is shown in red) and 𝜌𝑚𝑓 (𝑥𝑔 , 𝑟) (eq. 7, orange) are displayed. Global scaling
functions (eq. 9) are depicted in the second row (subfigures d,e,f).

In conclusion, all predefined MRW parameters can be
correctly recovered for the homogenous grid HG. The non-
homogenous point distribution of the first Sierpinski carpet S1
does not seem to significantly alter any of the local estima-
tions (𝑐1(𝑥𝑔), 𝑐2(𝑥𝑔), 𝜌𝑠𝑠(𝑥𝑔 , 𝑟), 𝜌𝑚𝑓 (𝑥𝑔 , 𝑟)) compared to those
obtained on HG. The immensely sparse bits of the second
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carpet S2 (Fig. 3 (a,b)), however, bias local intermittency
𝑐2(𝑥𝑔) estimations of the MRW components. Notwithstanding,
the bottom row of Figure 4 unequivocally demonstrates that
both univariate and bivariate estimations for the three different
supports are concurrent on the global level; The evolution of
global scaling functions 𝐶 𝑖

1(𝑟), 𝐶 𝑖
2(𝑟) and 𝜌𝑠𝑠(𝑟), 𝜌𝑚𝑓 (𝑟) (see

eq. 9) for the three distributions are roughly by one another
and with the progression of the theoretical lines colored in red
and orange.

V. APPLICATIONS IN THE GEOSPATIAL CONTEXT
Geospatial analysis and modeling frequently demand a

multivariate and multiscale framework. Geographical data can
also be regarded as a marked point process [13] whose
spatial distribution is heterogeneous. Therefore, we contend
that the proposed methodology may find essential applications
amongst others in human, environmental, or economic geogra-
phy. For example, prior studies have already linked the multi-
fractality of socioeconomic variables to classical measures of
inequality and segregation [4], [5]. Therefore it is compelling
to observe if a bivariate multifractal analysis of, e.g., the ratio
of under-18 and over-65-year-olds (in 2015 [22]) in the Paris
metropolitan region may provide interesting insights. Note that
in the case of our real-world example, performing a “local”
analysis is of elevated relevance: As an example, for the entire
2D field of over-65-year-olds, the standard deviation (𝜎𝑐𝑖(𝑥𝑔))of 𝑐1(𝑥𝑔) estimations is 𝜎𝑐1(𝑥𝑔) = 0.505 while for the first
and second MRW components, it is only 𝜎𝑐11 (𝑥𝑔)

= 0.036
and 𝜎𝑐21 (𝑥𝑔)

= 0.027. We find similar results for 𝑐2(𝑥𝑔) and
the bivariate parameters. Figure 5 shows the local cross-
coherence functions 𝜌𝑠𝑠 and 𝜌𝑚𝑓 : These generally reveal the
correlation between the multiscale spatial dependencies of
these two demographic variables. The results indicate that the
intensity and variability of the multifractal cross-correlation
𝜌𝑚𝑓 are more substantial than its self-similar counterpart
𝜌𝑠𝑠. For instance, within the Petit-Couronne area, 𝜌𝑚𝑓 often
displays large negative values. The latter signals rather extreme
demographic differences on the neighborhood level, where one
variable exhibits high local intermittency while the other is
non-intermittent. It may be above all in these areas that current
demographic trends contribute to an increase in small-scale
societal polarization and may, therefore, swiftly necessitate
various targeted mitigation measures.

Fig. 5. Local multifractal cross-correlations coefficients 𝜌𝑠𝑠 (left) and 𝜌𝑚𝑓(right) - mean value across all available scales - in and around the city of
Paris (“Petite Couronne”), France. The bivariate data analyzed here consists
of the ratio of under-18 and over-65-year-olds in 2015 [22].
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