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Abstract—Non-stationary multicomponent signals are ubiqui-
tous in real-world applications. They can be modeled as a super-
imposition of amplitude- and frequency-modulated components
so-called the modes, which require dedicated techniques to be
efficiently analyzed and disentangled. State-of-the-art methods
use specific assumptions and paradigms which can produce very
different results in specific use cases. Hence, this paper aims
to present and discuss the advantages and the limitations of
several promising recent approaches respectively applied to signal
denoising, mode retrieval and instantaneous frequency estimation
through a comparative evaluation benchmark. Our numerical
experiments show the specific scenarios where each method
is the more adapted in terms of quality of mode separation
and reconstruction while also considering the computational
efficiency.

Index Terms—non-stationary multicomponent signal, mode
retrieval, comparative study, time-frequency, synchrosqueezing

I. INTRODUCTION

Analyzing time series that comprise multiple oscillatory
components with time-varying features, such as amplitude
or frequency, is at the core of many applications in signal
processing [1]–[3]. Problems of this nature can be addressed
using the multicomponent signal (MCS) model, that can be
expressed as

x(n) =

J∑
j=1

xj(n), with xj(n) = aj(n) e
iϕj(n), (1)

where i2 = −1, n ∈ {0, 1, ..N − 1} is the time index, xj(n)
is an AM-FM component or mode, aj(n) and ϕj(n) are,
respectively, the instantaneous amplitude and phase functions
of the j-th component and J is the number of components. A
MCS analysis method can have different goals. Recovering the
individual components xj(n) when x(n) is contaminated with
noise might be one of them, as well as estimating aj(n) and
ϕj(n). In particular, one feature of the modes that applications
are often interested in is the instantaneous frequency (IF),
given by ϕ′

j(n) =
dϕj

dn (n).
Time-frequency (TF) and time-scale representations are

useful tools for analyzing MCS [4], allowing to reveal the
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time-varying frequency content of the signal and discern
its components. We focus here on the Short-Time Fourier
Transform (STFT) of a signal x, expressed as:

F g
x (n,m) =

+∞∑
ℓ=−∞

x(ℓ)g(n− ℓ) e−i 2πmℓ
M , (2)

where m ∈ {0, 1, ...,M − 1} is the frequency bin and g is a
real-valued analysis window.

The so-called spectrogram Sg
x(n,m) = |F g

x (n,m)|2 can
then be interpreted as a TF energy distribution of the signal
[4], [5]. Each mode in a MCS can be associated with local
spectrogram maxima forming a ridge, a trajectory in the TF
plane that approximately describes its IF. Detecting ridges is
the cornerstone of a large number of MCS analysis methods,
several promising ones [2], [6]–[8] are investigated in the
remaining . Other methods might exploit the spectrogram zeros
[9], [10], or even work in the time domain [11].

Since the choice of the suitable MCS analysis approach is
not trivial for a given application scenario, this paper aims to
compare several methods in three tasks: (1) Signal denoising,
(2) Individual component reconstruction, and (3) IF estimation
of each component. The aim of this work is twofold. First, we
objectively discuss strengths and weaknesses of the explored
approaches, so that future avenues of research can be identi-
fied. Second, we propose a common baseline to use in further
research, that is easily accessible to all researchers. To this
end, we use our previously proposed Python-based publicly-
available toolbox for benchmarking that provides a framework
for methods comparison for the sake of reproducibility and
researcher independence [12].

The rest of the paper is organized as follows. Section II
presents the main ideas of each investigated method in this
comparative study. The comparative results obtained in the
three considered tasks are presented in Section III and finally
discussed in Section IV.

II. METHODS

A. Synchrosqueezing Transform and Ridge Detection

The synchrosqueezing transform (SST) is a post-processing
technique that yields sharper TF representations while allow-
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ing reconstruction [13], [14]. It vertically reassigns the STFT
coefficients according to (n,m) 7→ (n, ω̂(n,m)), such as

Tx(n,m) =
∑

q:|m−ω̂(n,q))|≤1/2

F g
x (n, q) e

i 2πqn
M (3)

where ω̂(n,m) = m − M
2πℑ

{
F g′

x (n,m)
F g

x (n,m)

}
, F g

x (n,m) ̸= 0,

estimates the IF of the signal component located at (n,m).
When combined with a ridge detection (RD) algorithm [15],
the synchrosqueezed STFT allows to individually retrieve the
signal components as:

x̃j(n) =
1

Mg(0)

∑
q∈[Ω̂j(n)−ϵ/2,Ω̂j(n)+ϵ/2]

Tx(n, q), (4)

where Ω̂j(n) is the estimated ridge corresponding to the j-th
mode, and ϵ > 0 is the width of a strip around the ridge. For
this method, we use the RD method first proposed by Brevdo
et al. in [16], [17], which estimates the best Ωj(n) as

Ω̂j(n) = argmax
Ωj

N−1∑
n=0

|Tx(n,Ωj(n))|2−λ

N−2∑
n=0

|∆Ωj(n)|2 (5)

where ∆Ωj(n) = Ωj(n + 1) − Ωj(n) and λ controls the
smoothness of the solution. After removing the energy asso-
ciated with Ω̂j(n) from Tx(n,m), Ω̂j+1(n) can be found by
solving again (5), repeating this process up to the J-th ridge
in a so-called peeling scheme. In the following, we refer to
this method as SST+RD.

B. Modulation-Based Ridge Detection

In [6], the authors propose to improve the Brevdo’s method
by introducing a modulation-based RD (MB-RD) approach.
There, the ridges are estimated as:

Ω̂j(n) = argmax
Ωj

N−1∑
n=0

|F g
x (n,Ωk(n))|2,

s.t. |∆Ωj(n)−Mq̂(n,Ωj(n))| < C (6)

where q̂(n,m) is the real part of the complex modulation
operator used in second order SST [18], which is an estimator
of ϕ′′

j (n). Two mode reconstruction strategies are used here
along with MB-RD: 1) Simple Reconstruction (SR): consider-
ing STFT coefficients in a neighborhood of the detected ridge
that are above a given noise threshold [2], [6], and 2) Local
Linear Chirp (LCR) approximation of the mode, described in
[2], [19].

C. Pseudo-Bayesian ridge detection

The pseudo-Bayesian (PB) method [7] addresses the IF esti-
mation problem, by detecting the ridges on the TF plane within
a Bayesian framework. The spectrogram of the observed signal
is modeled as a random variable assuming the presence of a
unique component at each TF point, as:

sn,m|ϕ′(n) ∼ h (m− ϕ′(n)) (7)

with h(m) = e−(
2πmL

M )
2

, L being a parameter related to the
time spread of the analysis window g. The Bayesian model is
completed by assigning to ϕ′(n) a Gaussian random walk prior
model to enforces spatial smoothness. Instead of the classical
Kullback–Leibler cross entropy, an alternative divergence [20]
is minimized to account for the lack of generality of the model.
While sequential moment matching performed over the time
axis provides a single ridge estimate, the method is repeated
for each component after removal of the spectrogram energy
in a neighborhood of the detected ridge [21].

D. Stochastic Expectation Maximization

The Bayesian method proposed in [8] performs IF and
amplitude estimation of multicomponent signals whose modes
can overlap in the TF plane. The observed signal spectrogram
is modeled as a mixture p(sn,m|wn,ϕ

′
n) =

J∑
j=1

wn,jh(m− ϕ′
j(n)) +

1

M

1−
J∑

j=1

wn,j

 , (8)

with wn = [wn,1, . . . , wn,J ]
⊤ the mixture weights at time

instant n, and ϕ′
n = [ϕ′

1(n), . . . , ϕ
′
J(n)]

⊤. A stochastic
Expectation Maximization (SEM) algorithm [22] is used to
estimate the model parameters. It consists in iteratively ap-
proximating the prior models using a Markov Chain Monte
Carlo approach, followed by the classical steps of the EM
algorithm

Q(W |W(i)) = EΦ′|W(i),S [log(p(W ,Φ′|S))]
W(i+1) = argmax

W
Q(W |W(i)),

(9)

with with S = {sn}N−1
n=0 such as sn = [sn,0, . . . , sn,M−1]

⊤,
and W(i) the current estimation of W at iteration i, W =
{wn}N−1

n=0 and Φ′ = {ϕ′
n}N−1

n=0 . A post-processing step
interpolates the estimated IF in overlapping regions.

E. Finite Rate of Innovation

In [23], a mode estimation method based on a sparse
modeling of the signal innovation is proposed. The signal
spectrogram vertical slices are modeled as

sn,m ≈
J∑

j=1

a2j (n)h(m− ϕ′
j(n)) (10)

which is assumed to be the convolution between a stream of
Dirac of weight a2k(n) and located at ϕ′

k(n), with the window
h. The signal modes are estimated by reconstructing the stream
of Dirac pulses fn(m) =

∑
j a

2
j (m)δ(m − ϕ′

j(n)), using the
finite rate of innovation principle [24], [25]. From Eq. (10),
we have

sn,m =

∞∑
q=−∞

Fh(q)

J∑
j=1

a2j (n) e
−i2πqϕ′

j(n)

M

︸ ︷︷ ︸
Ffn (q)

e
i2πqm

M

(11)

with Fh (resp. Ffn ) the discrete Fourier transform of h
(resp. fn). An alternative to the Prony method is then used
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to estimate ϕ′
j(n) from fn. Authors indeed resort to a total

least squared approach (TLS) [25] to avoid model mismatch.
It consists in replacing the annihilating filter by the minimizer
of ∥Ah∥2, s.t.∥h∥2 = 1. In the following, we refer to this
approach as FRI method.

F. Delaunay Triangulation of the Spectrogram Zeros

As shown in [9], the zeros of the spectrogram can be used to
identify the TF signal domain, allowing to disentangle signal
and noise. Indeed, the zeros of the spectrogram of white
Gaussian noise (WGN) are uniformly distributed in the TF
plane [9], a phenomena that is mathematically described in
detail in [10]. When a signal is present, the distribution of
the spectrogram zeros is disrupted, and large regions without
zeros are generated, corresponding to the TF domain of the
signal. Then, one can estimate these regions by computing a
Delaunay triangulation (DT) of the zeros of the spectrogram,
and selecting the triangles with at least one edge longer than
a previously fixed threshold emax [9]. We shall use here two
empirically chosen values of emax = 1.45 and emax = 1.75.
Finally only the J more energetic components are extracted.
Because this method is not based on RD, we estimate the IF
as the finite difference approximation of the derivative of the
phase of the complex-valued component zj(n), obtained by
inverting F g

x (n,m) considering only the upper-half of the TF
plane, previous multiplication with a binary extraction mask
of the j-th component.

III. NUMERICAL RESULTS

In this section, we report and discuss the results of the pro-
posed benchmarks. In order to compare the investigated meth-
ods, we used a freely-available, Python-based, benchmarking
toolbox [12] that allows to compare methods implemented in
Matlab or in Python. This approach gives interested readers the
chance to easily download the benchmarks and to include their
own methods to compare them with the ones used in this work
(instructions are given in the benchmark public repository)1.
The benchmark configuration requires defining a set of signals
to use (from more than 20 signals offered by the toolbox), a
range of SNRs to explore (using additive real WGN in this
case), and choosing a performance metric. For the denoising
and component retrieval benchmarks, this metric is the so-
called quality reconstruction factor (QRF): QRF(z, ẑ) =
10 log10(∥z∥2/∥z − ẑ∥2), where z is the noiseless signal (or
component), ẑ is an estimation of z, and ∥ · ∥ is the usual
2-norm. For the IF estimation performance we use the mean
squared error (MSE): MSE(z, ẑ) = 1

N

∑N−1
q=0 (z − ẑ)2, where

ẑ is the IF estimation and z is the true IF. Fig. 1 shows
the spectrograms of the synthetic signals used in the three
benchmarks, with N = 1024, for SNRs ranging from −20 to
20 dB, in steps of 10 dB.

1Codes available at: https://github.com/jmiramont/benchmarks
eusipco2023
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Fig. 1. Signal denoising results given as the average QRF over 30
realizations. The spectrogram of the synthetic signal is shown in each
plot for reference.

A. Signal Denoising

Fig. 1 shows the signal denoising results of three MCSs, the
spectrogram of which are shown in each subfigure. For high
SNR, the most competitive methods are DT (with emax =
1.45), followed by PB, FRI and EM. For low SNR, the best
method was DT (with emax = 1.75), whereas DT (with
emax = 1.45) MB-SR and MB-LCR showed a comparable per-
formance. Because DT behaves essentially as a hard-threshold
approach, given that large regions without zeros in the plane
coincide with those with high energy, a strict threshold emax =
1.75 provides the best results for SNR < 0 dB, whereas
emax = 1.45 is more appropriate for SNR > 0 dB. Some
methods can experiment difficulties when the components do
not last the entire duration of the signal, as shown in Fig. 2b,
where PB, FRI and EM perform worst than with the signal
used in Fig. 2a.

B. Signal Components Estimation

Figs. 2a and 2b show the QRF of the reconstructed com-
ponents of the signal used in Fig. 1a. This signal has two
components: a sinusoidal chirp (the spectrogram of which
is shown for reference in Fig. 2a), and a linear chirp (Fig.
2b). We stress that all methods receive the entire signal,
consisting in the sum of both components. As before, DT
(emax = 1.45 and emax = 1.75) shows the best performance
for low SNR, followed by MB-LCR and MB-LCR for both
components. For higher SNR, FRI and PB are the methods
with the best performance for the more challenging sinusoidal
chirp, followed by EM and DT (with emax = 1.45). In the case
of the linear chirp, however, the more competitive methods are
MB-SR and DT.

C. Instantaneous Frequency Estimation

Figs. 2c and 2d show the MSE of the IF estimation for
the individual components of the signal shown in Fig. 1a.
These results show how an effective IF estimation does not
necessary imply a satisfactory reconstruction of the individual
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Fig. 2. (a) and (b): Quality reconstruction factor (QRF) of the
individual components of the signal displayed in Fig. 1a. (c) and (d):
Mean squared error (MSE) of the IF estimation for the same signal.
The spectrogram of the analyzed component is shown in each plot
for reference. The results shown (QRF and MSE) are the average of
over 30 realizations. MB-SR and MB-LCR are superimposed because
they both use RD-MB. (e) IF estimations of the crossing chirps in
the signal shown in Fig. 1c. The estimations are superimposed to the
spectrogram of the signal near the crossing point.

components, and vice versa. For instance, even though DT
provides the best results in terms of the QRF for low SNR, this
does not result in a better estimation of the IF (see Fig. 2c). In
contrast, ridge-based methods, being naturally suited for this
task, perform better. Considering the sinusoidal chirp, Fig. 2c,
EM provided the best IF estimation for SNR ≥ 0 dB. For
lower SNRs, SST+RD and MB-RD were the most competitive
methods. However, MB-RD was the most effective method
considering the linear chirp component, Fig. 2d, although
FRI and SST+RD resulted in the best IF estimation for
SNR = −20 dB.

Let us consider now the signal with overlapping chirps
from Fig. 1c. Fig. 2e shows the IF estimations obtained with
different methods, superimposed to the spectrogram. The top
panel shows that EM results in more smooth approximations
of the IF that correctly separates both chirps at the crossing
point.

D. Computational Complexity

Here we assess the computational complexity of the compet-
ing methods by comparing their computational time, expressed
in seconds, in diverse scenarios. More precisely, the computa-

tional efficiency of the methods is evaluated according to the
number of frequency bins M and signal length N . The results
obtained with N = 512 (resp. N = 1024) are presented in
Table I. All the experiments were run on an Intel CORE i9
with 32 GB of RAM using Matlab 2022a and Python 3.9.
The fastest methods were SST+RD, MB-RD and PB, while
the slowest method was found to be EM by at least two
orders of magnitude. However, as seen before, the latter can
provide better IF estimations than other methods. The large
computational complexity of the EM method is mainly due to
the likelihood computation, performed at each iteration of the
algorithm.

TABLE I
COMPUTATION TIME FOR A SIGNAL WITH J = 2 COMPONENTS,

SNR = 10 DB, AND LENGTH N ∈ {512, 1024}. QRF IS IN DB. THE
COMPUTATION TIME IS GIVEN IN SECONDS. THE BEST RESULTS PER

COLUMN ARE BOLDFACED.

Method M = 512 M = 1024 M = 2048

SST+RD mean QRF 12.55 11.78 9.29
comp. time 0.12 0.21 0.41

EM mean QRF 12.39 11.87 8.36
comp. time 5.16 36.23 133.01

DT mean QRF 13.29 11.81 4.39
comp. time 0.40 0.63 1.08

FRI mean QRF 11.91 12.91 11.93
comp. time 0.29 0.40 0.71

PB mean QRF 13.02 9.88 10.09
comp. time 0.27 0.27 0.29

MB-RD mean QRF 11.06 11.25 11.22
comp. time 0.18 0.26 0.41

(a) N = 512.

Method M = 512 M = 1024 M = 2048

SST+RD mean QRF 13.66 13.79 13.36
comp. time 0.23 0.43 0.85

EM mean QRF 14.45 14.61 14.69
comp. time 10.19 72.21 256.23

DT mean QRF 14.68 15.03 14.59
comp. time 0.80 1.27 2.17

FRI mean QRF 11.82 11.83 11.79
comp. time 0.60 0.90 1.41

PB mean QRF 12.99 14.75 11.60
comp. time 0.88 0.96 1.07

MB-RD mean QRF 11.60 11.51 11.08
comp. time 0.36 0.53 0.83

(b) N = 1024.

E. Examples With a Real-World Signal

In this section, we evaluate the behavior of the methods on a
real-world signal2, whose spectrogram is displayed in Fig. 3a.
The IF estimation of three modes performed using the EM,
MB-RD and PB method, are respectively displayed in Fig. 3b,
3c and 3d. According to Fig. 3, all the methods estimate
the three main components (with highest energy). MB-RD,
EM and PB obtain mostly similar satisfying results for the IF
curves of the three main components.

Figs. 3e and 3f show the mask obtained with DT using
emax = 1.45 and emax = 1.75 respectively. Despite obtaining

2The authors wish to thank Curtis Condon, Ken White, and Al Feng of the
Beckman Institute of the University of Illinois for the bat signal data and for
permission to use it in this paper.
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Fig. 3. First row: IF estimations (in colored lines) superimposed to
the spectrogram of a bat echolocation signal. (a) Spectrogram of the
signal (for reference). (b) IF estimation using MB-RD method. (c)
IF estimation using EM method. (d) IF estimation using PB method.
Second row: binary extraction masks for three methods. Different
colors indicate the different extracted components. (e) DT method
with emax = 1.45. (f) DT method with emax = 1.75. (g) EM method.
(h) PB method.

more complete extraction masks than with other approaches,
the estimated components in this case can be mixtures of the
original ones, as can be seen from the colors in the masks
shown in the figures. In contrast, RD-based, EM and FRI
methods can discriminate between closer components more
effectively, as long as the ridges can be detected [26].

IV. CONCLUSIONS

We compared several recently-proposed MCS analysis
methods for three tasks: signal denoising, component retrieval
and IF estimation. For the first task, DT obtained the best
results, although the performance is highly dependent on
the selected threshold emax. FRI, PB and MB-SR showed
comparable results for high SNR, whereas for low SNR, MB-
LCR and MB-SR were more competitive. DT can adapt to a
wide variety of signal domain shapes, which makes it more
appealing for cases with strong amplitude modulation.

Considering individual component reconstruction, PB, MB-
SR and DT (emax = 1.45) yielded the best results for high
SNR. For IF estimation however, the best approaches were
MB-RD and EM, although for very low SNRs, FRI and
SST+RD are more suitable choices. Future work will focus
on strategies to automatically determine the optimal hyper-
parameters of each method, such as the value of emax used in
DT. Reducing the computational cost of the EM method also
remains an open issue. Furthermore, it could be interesting
to extend this benchmark by investigating more methods,
especially the new ones proposed in the future.
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