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ABSTRACT

We formulate statistically robust Sparse Bayesian Learning
(SBL) for Direction of Arrival (DOA) estimation from Com-
plex Elliptically Symmetric (CES) data using a general ap-
proach based on loss functions. Simulation results for DOA
estimation are obtained for several choices of loss functions:
Gauss, multivariate t (MVT), Huber, and Tyler. The root
mean square DOA error is discussed for Gaussian, MVT, and
✏-contaminated data. The robust SBL estimators perform well
in the presence of outliers and for heavy-tailed data and al-
most like classical SBL for Gaussian data.

1. INTRODUCTION

Heavy-tailed data arises e.g. due to clutter in radar [1] and
interference in wireless links [2]. Such data demand a statis-
tically robust approach [3].

Sparse Bayesian Learning (SBL) was originally derived
under a multivariate Gaussian assumption on the data [4]. Di-
rection of arrival (DOA) estimation for plane waves using
SBL is proposed in Ref. [5, Table I]. The original SBL is
lacking in statistical robustness [6, 7], but the SBL approach
can incorporate various priors. A Bayes-optimal algorithm
was proposed to estimate DOAs in the presence of impulsive
noise from the perspective of SBL in [8]. In the following, we
derive robust and sparse Bayesian learning which can be un-
derstood as introducing a data-dependent weighting into the
sample covariance matrix (SCM) estimate.

First, M-estimation approach to SBL for DOA based on
the Complex Elliptically Symmetric (CES) data model with
unknown source and noise variances is formulated. This is
similar to stochastic likelihood (type-II likelihood) maximiza-
tion in array processing [9, 10].

Next, the likelihood function is derived and various priors
are incorporated with potentially strong outliers. This leads
to a robust and sparse DOA estimator which is based on the
assumption that the data observations follow a centered (zero-
mean) CES distribution with finite second-order moments.

2. COMPLEX ELLIPTICALLY SYMMETRIC DATA

Narrowband waves are observed on N sensors for L snap-
shots y` and the data is Y = [y1 . . .yL] 2 CN⇥L. The snap-
shots y` are modeled as independent identically distributed

(iid) with Complex Elliptically Symmetric (CES) distribution,

y` ⇠ CES(0,⌃, g) , (1)

where 0 is the mean, ⌃ is the scatter matrix and g the density
generator. Its probability density function (pdf) is of the form

py(y`) = C (det⌃)�1 g(yH

` ⌃
�1y`) . (2)

where C is an irrelevant normalization constant. We further
assume that the covariance matrix cov(y`) = E(y`yH

` ) exists
and equals the scatter matrix ⌃, cf. [7]. The scatter matrix is
then modeled as

⌃ = A�AH + �2IN , (3)
� = cov(x`) = diag(�) (4)

where A 2 CN⇥M is a dictionary matrix, � = [�1 . . . �M ]T

is the K-sparse vector of unknown source powers, M � N ,
and �2 represents the noise power.

The data model (1) has been used for modelling heavy-
tailed non-Gaussian data, most notably clutter in radar
[11–13]. We use CES assumptions differently from [11–13].
where the model has been used to model noise, clutter, or
interference. We assume that the snapshots follow a CES
distribution. The data model (1) includes the additive white
Gaussian noise (AWGN) model as a special case and is
general enough to include data models with heavy-tails or
outliers.

For numerical performance evaluations of the derived M-
estimator of DOA, three data models are used in Sec. 4: Gaus-
sian, MVT, and ✏-contaminated.

2.1. Dictionary for plane wave arrivals

The M columns of the dictionary A = [a1 . . .aM ] are the
replica vectors for all hypothetical DOAs. For a uniform lin-
ear array (ULA), the dictionary matrix elements are Anm =
e�j 2⇡� (n�1)d sin ✓m where � is the wavelength and d is the
element spacing. The dictionary’s DOA grid is defined as
✓m = �90� + (m � 1)�, 8m = 1, . . . ,M where � is the
dictionary’s angular grid resolution, � = 180�/(M � 1).
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2.2. Traditional signal plus noise model

The unknown zero-mean complex source amplitudes are the
elements of X = [x1 . . .xL] 2 CM⇥L where M is the
considered number of hypothetical DOAs on the given grid
{✓1, . . . , ✓M}. The source amplitudes are independent across
sources and snapshots, i.e., xml and xm0l0 are independent for
(m, l) 6= (m0, l0).

The noise N = [n1 . . .nL] 2 CN⇥L is assumed inde-
pendent identically distributed (iid) across sensors and snap-
shots, zero-mean, with finite variance �2 for all n, `.

The commonly assumed Gaussian data model is recov-
ered for g(t) = e�t, cf. Table 1, Then

y` = Ax` + n` . (5)
The source and noise amplitudes are jointly Gaussian and in-
dependent of each other, i.e. x` ⇠ CNM (0,�) and n` ⇠
CNN (0,�2IN ). This model results in Gaussian data, y` ⇠
CNN (0,⌃). Model (5) was assumed in [5] while here the
more general model (1) is used.

2.3. MVT distributed snapshots

In array processing applications, the complex Multi-Variate
t-distribution (MVT distribution) [14, 15] can be used as an
alternative to the Gaussian distribution in the presence of out-
liers because it has heavier tails than the Gaussian distribu-
tion. The MVT-distribution is a suitable choice for such data
and provides a parametric approach to robust statistics [3, 6].
The complex MVT distribution is a special case of the CES
distribution, cf. Table 1.

2.4. Source sparsity pattern and active set

We assume that K sources are present and the sparsity pattern
is the same for all snapshots. The sparsity pattern is modeled
by the active set

M={m 2 {1, . . . ,M} |�m 6= 0} = {m1, . . . ,mK}. (6)

In the traditional signal model, xm` = 0 for all m 62 M and
all `. The `th column of X is K-sparse.

The K “active” replica vectors are aggregated in the active
dictionary,

AM = [am1 . . .amK ] 2 CN⇥K , (7)

with its kth column vector amk , where mk 2 M.

3. M-ESTIMATION BASED ON CES DISTRIBUTION

We follow a general approach based on loss functions and
assume that the data Y has a CES distribution with zero mean
0 and positive definite Hermitian N ⇥ N covariance matrix
parameter ⌃ [16, 17]. Thus

p(Y |0,⌃) = CL
LY

`=1

det(⌃�1)g(yH

` ⌃
�1y`). (8)

An M-estimator of the covariance matrix ⌃ is defined as a
positive definite Hermitian N ⇥N matrix that minimizes the
objective function [3, (4.20)],

L(⌃) =
1

Lb

LX

`=1

⇢(yH

` ⌃
�1y`)� log det(⌃�1), (9)

where y` is the `th array snapshot and ⇢ : R+
0 ! R+, is

called the loss function. The loss function is any continuous,
non-decreasing function which satisfies that ⇢(ex) is convex
in �1 < x < 1, cf. [3, Sec. 4.3]. Note that the objec-
tive function (9) is a penalized sample average of the chosen
loss function ⇢ where the penalty term is log det⌃. A spe-
cific choice of loss function ⇢ renders (9) equal to the neg-
ative log-likelihood of ⌃ when the data are CES distributed
with density generator g(t) = e�⇢(t) [18]. If the loss func-
tion is chosen, e.g., as ⇢(t) = t then (9) becomes the negative
log-likelihood function for ⌃ for Gaussian data.

The term b is a fitting coefficient, called consistency fac-
tor, which renders the minimizer of the objective function (9)
to be equal to ⌃ when the data are Gaussian, thus

b =
1

N

Z 1

0
 (t/2)f�2

2N
(t)dt (10)

where  (t) = t d⇢(t)/dt and f�2
2N

(t) denotes the pdf of chi-
squared distribution with 2N degrees of freedom.

Minimizing (9) with b according to (10) results in a con-
sistent M-estimator of the covariance matrix ⌃ when the ob-
jective function is derived under a given non-Gaussian data
assumption (as in Sec. 3.1) but is in fact Gaussian (y` ⇠
CNN (0,⌃)).

3.1. Loss functions

Four loss functions ⇢(·) are used in simulations. These are
summarized in Table 1 together with their weight functions
u(·; ·), density generators g(·), and consistency factors b.

3.2. M-Estimate of Source Power

Similarly to Ref. [5, Sec. III.D], we regard (9) as a function
of � and �2 and compute the first order derivative This gives

aH

m⌃�1am = aH

m⌃�1RY ⌃�1am, (11)

where RY is the adaptively weighted SCM [3, Sec. 4.3],

RY =
1

Lb

LX

`=1

u(yH

` ⌃
�1y`; ·)y`y

H

` (12)

which is Fisher consistent for the covariance matrix when Y
follows a Gaussian, i.e. E[RY ] = ⌃ due to the consistency
factor b [3, Sec. 4.4.1]. We multiply (11) by �m and obtain
the fixed-point equation

�m = �m
aH

m⌃�1RY ⌃�1am

aH
m⌃�1am

8m 2 {1, . . . ,M}, (13)
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loss data density loss weight loss consistency
name generator g(t) ⇢(t) u(t; ·)  (t) parameter factor b

(2) � log g(t) ⇢0(t) tu(t; ·) (10)
Gauss e�t t 1 t n/a 1.000
MVT (1 + t/⌫)�(⌫+2N)/2 ⌫+2N

2
log(⌫ + 2t) ⌫+2N

⌫+2t
⌫+2N
2+⌫/t ⌫ = 2.1 0.998

Huber exp(�⇢Huber(t; c)) [3, Eq. (4.29)] =

⇢
1 if t < c2

c2/t else t uHuber(t) q = 0.9 0.987

Tyler t�N N log t N/t N n/a 1/⌧̂

Table 1. Density generators used for CES data generation, loss and weight functions used in DOA M-estimation, consistency
factor b is for N = 20 and for Tyler, ⌧̂ is a robust estimate of tr(⌃)/N .

which is the basis for an iteration to solve for � numerically.
The active set M is then selected as either the K largest en-
tries of � or the entries with �m exceeding a threshold.

3.3. M-Estimate of Noise Power

The original SBL algorithm exploits Jaffer’s necessary con-
dition [10, Eq. (6)] for the noise variance estimate. For CES
data, the noise is estimated robustly [6] based on (11),

�̂2
R = tr

⇥
(IN �AMA+

M)RY

⇤
/(N �K), (14)

where (·)+ denotes the Moore-Penrose pseudo inverse.
To stabilize the noise variance M-estimate (14) for non-

Gauss loss, we define lower and upper bounds for �̂2 and en-
force �2

floor  �̂2  �2
ceil by

�̂2 = max(min(�̂2
R,�

2
ceil),�

2
floor) (15)

Tyler’s M-estimator is unique only up to a scale which
affects the noise variance estimate �̂2

R. For this reason, we
normalize RY to trace 1 to remove this ambiguity if Tyler
loss is used.

3.4. Algorithm

The proposed DOA M-estimation algorithm using SBL is dis-
played in Table 2 with the following remarks:

DOA grid pruning: To speed up the iterations, we in-
troduce the pruned DOA grid P for focusing computational
resources on those DOAs which are associated with source
power estimates exceeding a minimum threshold �floor .The
pruned DOA grid is formally defined as an index set,

P={p 2 {1, . . . ,M} | �new
p � �floor}={p1, . . . , pP } (16)

where �floor=�range max(�new) and we choose �range = 10�3.
Convergence Criterion: The DOA Estimates returned by

the iterative algorithm in Table 2 are obtained from the active
set M. Therefore, the active set is monitored for changes
in its elements to determine whether the algorithm has con-
verged. If M has not changed during the last z 2 N iterations
then the repeat-until loop (lines 14–29 in Table 2) is exited.
Here z is a tuning parameter which allows to trade off com-
putation time against DOA estimate accuracy. To ensure that

the iterations always terminate, the maximum iteration count
is defined as jmax with z < jmax.

4. SIMULATION RESULTS

Simulations are carried out for evaluating the root mean
squared error (RMSE) of DOA versus array signal to noise
ratio (ASNR) based on synthetic array data Y . Synthetic
array data are generated for two scenarios as listed in Table
3. The source amplitudes x` in (4) are complex circularly
symmetric zero-mean Gaussian. The wavefield is modeled
by (1) and observed by a ULA with N = 20 sensors at
�/2 spacing. The dictionary A consists of M = 18001
replica vectors and the dictionary’s angular grid resolution is
� = 180�/(M � 1) = 0.01�, cf. Sec. 2.1.

The RMSE of the DOA estimates over Nrun = 250 simu-
lation runs with random data realizations is used for evaluat-
ing the algorithm’s performance,

RMSE =

vuut
NrunX

r=1

KX

k=1

[min(|✓̂rk � ✓rk|, emax)]2

KNrun
, (17)

where ✓rk is the true DOA of the k source and ✓̂rk is the corre-
sponding estimated DOA in the rth run when K sources are
present in the scenario. This RMSE definition is a specializa-
tion of the optimal subpattern assignment (OSPA) when K is
known, cf. [20]. We use emax = 10� in (17). Thus maximum
RMSE is 10�.

The synthetic CES data for Gaussian and MVT cases are
generated according to model (1) with (3) and generators
listed in Table 1. We also generated ✏-contaminated data
for evaluation of RMSE. This heavy-tailed data model is not
covered by model (1) with the assumptions in Sec. 2. In-
stead, the noise n is drawn with probability (1 � ✏) from a
CN (0,�2

1I) and with probability ✏ from a CN (0,�2�2
1I),

where � is the outlier strength. Thus, y` is drawn from
CN (0,A�AH+�2

1IN ), using (3) with probability (1�✏) and
with outlier probability ✏ from CN (0,A�AH + (��1)2IN ).
The resulting noise covariance matrix is �2IN similar to the
other models, but with

�2 = (1� ✏+ ✏�2)�2
1 . (18)
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1: input Y 2 CN⇥L data to be analyzed
2: select the weight function u(·; ·) and loss parameter
3: constant A 2 CN⇥M dictionary matrix
4: K 2 N, with K < N , number of sources
5: SNRmax 2 R+ upper SNR limit in data
6: �range 2 [0, 1], dynamic range for DOA grid pruning
7: jmax 2 N iteration count limit
8: z 2 N with z < jmax convergence criterion
9: set SY = Y Y H/L

10: set �2

ceil = tr [SY ] upper limit on �̂2

11: �2

floor = �2

ceil/SNRmax lower limit on �̂2

12: initialize �̂2, �new, using Ref. [7, Eq.(24)], j = 0
13: repeat

14: j = j+1 increment iteration counter
15: �old = �new

16: �floor = �range max(�new), source dynamic range
17: P = {p 2 N | �new

p � �floor} pruned DOA grid (16)
18: �P = diag(�new

P ) pruned source powers
19: AP = [ap1 , . . . ,apP ] for all pi 2 P , pruned dictionary
20: ⌃P = AP�PA

H

P + �̂2IN (3)

21: RY = 1

Lb

LP
`=1

u(yH

` ⌃
�1

P y`; ·)y`y
H

` (12)

22: if using uTyler(·; ·) then normalize RY = RY
trRY

23: �new
p = �old

p

✓
aH

p⌃
�1
P RY ⌃�1

P ap

aH
p⌃

�1
P ap

◆
for all p 2 P (13)

24: M = {m 2 N | K largest peaks in �new} active set
25: AM = [am1 , . . . ,amK ]

26: �̂2

R =
tr[(IN�AMA+

M)RY ]
N�K (14)

27: �̂2 = max(min(�̂2

R,�
2

ceil),�
2

floor) (15)
28: until (M has not changed during last z iterations) or j > jmax

29: output M and j

Table 2. Robust Sparse Bayesian Learning for DOA [19].

Although the noise n is CES distributed, the snapshot data
(signal + noise) is not. The limiting distribution of ✏-
contaminated noise for ✏ ! 0 and any constant � > 0 is
Gaussian.

The proposed DOA M-estimation algorithm using SBL is
displayed in Table 2. The convergence criterion parameter
z = 10 is chosen for all numerical simulations and the max-
imum number of iterations was set to jmax = 1200, but this
maximum was never reached.

Data Y are generated for the three source scenario (K =
3) with complex circularly symmetric zero-mean Gaussian
amplitude from DOAs ✓8701 = �3�, ✓9201 = 2�, ✓16501 =

scenario DOAs source variance
single source �10� �8001 = 1
three sources �3�, 2�, 75� �8701 = �9201 = �16501 = 1

3

Table 3. Source scenarios, source variances normalized to
tr(�) = 1

Fig. 1. RMSE for each DOA M-estimator at high ASNR =
30 dB for Gaussian, MVT, and ✏-contaminated data.

Fig. 2. For ✏-contaminated data ✏ = 0.05 with one source,
RMSE versus outlier strength � for each loss function for
(left): ASNR= 25 dB and background noise �1 is decreasing,
and (right): Background noise �1 is fixed and outlier noise
��1 is increasing (at � = 1: ASNR= 25 dB; and at � = 103:
ASNR = 25� 10 log(1� ✏+ ✏�2) = �22 dB). RMSE eval-
uation based on Nrun = 250 simulation runs.

75� according to the data models. The true active set M is
{8701, 9201, 16501} and source strengths are specified in the
scenario as �8701 = 1

3 , �9201 = 1
3 , �16501 = 1

3 and �m = 0
for all m 62 M, so that tr [�] = 1.

The effect of the loss function on RMSE performance at
high ASNR = 30 dB is illustrated in Fig. 1. This shows
that for Gaussian data all choices of loss functions perform
equally well at high ASNR. For MVT data in Fig. 1 (middle),
we see that the robust loss functions (MVT, Huber, Tyler)
work well, and approximately equally, whereas RMSE for
Gauss loss is factor 2 worse. For ✏-contaminated data in Fig.
1 (right) the Gauss loss performs a factor worse than the ro-
bust loss functions. Huber loss has slightly higher RMSE than
MVT and Tyler loss.

For small outlier strength � and for MVT data, the Gauss
loss performs fine, but as the outlier noise increases the robust
M-estimators outperform, see Fig. 2. As � increases, the total
noise changes, see (18). We here chose to keep the total noise
constant in Fig. 2(left) by decreasing the background noise
with increasing �, or having the background noise constant
in Fig. 2(right) whereby the total noise increases. For large
outlier strength, Tyler loss performs best in Fig. 2(left) and
does not breakdown in Fig. 2(right).

Due to the algorithmic speedup associated with the DOA
grid pruning described in Sec. 3.4, it is feasible to run the
algorithm in Table 2 with large dictionary size M with corre-
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Fig. 3. Effect of dictionary size M 2
{181, 361, 1801, 18001, 180001} on RMSE vs. SNR for
a single source a) fixed DOA �10� on the grid and b) random
uniformly distributed DOA ⇠ �10�+U(��/2, �/2). RMSE
evaluation based on Nrun = 250 simulation runs.

sponding angular grid resolution � = 180�/(M � 1).
The effect of grid resolution is illustrated in Fig. 3 for

a single source impinging on a N = 20 element �/2-
spaced ULA. The Gaussian data model is used. Fig. 3
shows RMSE vs. ASNR for a dictionary size of M 2
{181, 361, 1801, 18001, 180001}. In Fig. 3(a), the DOA
is fixed at �10�, cf. single source scenario in Table 3, the
DOA is on the angular grid which defines the dictionary ma-
trix A. In Fig. 3(b) the DOA is random, the source DOA is
sampled from �10� + U(��/2, �/2) (� = 180�/(M � 1) is
the angular grid resolution). The source DOA is not on the
angular grid which defines the dictionary matrix A.

For source DOA on the dictionary grid, Fig. 3(a), the
RMSE performance resembles the behavior of an ML-
estimator at low ASNR up to a certain threshold ASNR
(dashed vertical lines) where the RMSE abruptly becomes
zero. The threshold ASNR is deduced from the following
argument: Let am be the true DOA dictionary vector and
am+1 be the dictionary vector for adjacent DOA on the an-
gular grid. Comparing the corresponding Bartlett powers,
we see that DOA errors become likely if the noise variance
exceeds 2(|aH

mam|� |aH

mam+1|)/N = 2� 2|aH

mam+1|/N .
For source DOA off the dictionary grid, Fig. 3(b), the

RMSE performance curve resembles the behavior of an ML-
estimator at low ASNR up to a threshold ASNR. In the ran-
dom DOA scenario, however, the RMSE flattens at increasing
ASNR. Since the variance of the uniformly distributed source
DOA is �2/12, the limiting RMSE = �/

p
12 for ASNR !

1. The limiting RMSE (dashed horizontal lines) depends on
the dictionary size M through the angular grid resolution �.
The asymptotic RMSE limits are shown as dashed horizontal
lines in Fig. 3(b).

5. CONCLUSION

Robust Sparse Bayesian Learning (SBL) is derived based on
loss functions and the assumption that the data are complex
elliptically symmetric with finite covariances. The DOA M-

estimator is available on GitHub [19]. The M-estimator’s
DOA RMSE is investigated numerically with synthetic ar-
ray data for four loss functions: the ML-loss for the circular
complex multivariate t-distribution (MVT), as well as Huber
and Tyler loss. For Gauss loss, the method reduces to SBL.
Synthetic array data are generated for Gaussian, MVT, and
✏-contaminated models. The M-estimators perform well in
simulations for MVT and ✏-contaminated data and close to
SBL for Gaussian data
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[5] P. Gerstoft, C.F. Mecklenbräuker, A. Xenaki, and S. Nannuru. Mul-

tisnapshot sparse Bayesian learning for DOA. IEEE Signal Process.

Lett., 23(10):1469–1473, 2016.
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