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Abstract—The article proposes a fast, two-stage method for the
identification of nonstationary systems. The method uses iterative
reweighting to robustify the identification process against the
outliers in the measurement noise and against the numerical
errors that may occur at the first stage of identification. We
also propose an adaptive algorithm to optimize the values of the
hyperparameters that are crucial for this new method.

Index Terms—nonstationary systems, identification, adaptive
algorithms, local basis function method, iterative reweighting

I. INTRODUCTION

Recently, a new two-step method for the identification
of nonstationary systems has been proposed, called the fast
local basis function (fLBF) method [1]. This new method
is a close approximation of the local basis function method
proposed in [2]. It allows one to obtain accurate estimates
of time-varying system parameters while maintaining low
computational complexity. The most recent application per-
fectly suited for this identification method is self-interference
cancellation in full-duplex (FD) underwater acoustic (UWA)
communications [3], [4]. In full-duplex communication, both
communication devices exchange information simultaneously
using the same bandwidth. As a result, the recorded signal
from the far-end transmitter is contaminated by the signal
from the near-end transmitter. This self-interference signal
consists of the known transmitted signal convolved with a
time-varying impulse response of the self-interference channel
[3]. Self-interference cancellation can be performed effectively
if one has reliable estimates of the time-varying parameters
of the self-interference channel. An important feature of this
application is that it allows one to operate with some decision
delay, which means that one can use non-causal identification
methods such as the fLBF technique.

The fLBF method is a two-stage algorithm. The first stage
(preestimation) provides “raw” but approximately unbiased
estimates of parameter trajectories, regardless of the type and
rate of parameter variation. The preestimates are obtained by
“inverse filtering” the exponentially weighted least squares
(EWLS) estimates of the parameter trajectories. The resulting
equations can be solved using numerical methods, but these
methods increase the variance of the preestimation errors and
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may introduce impulsive disturbances into the preestimates.
Therefore, at the second stage (postfiltering) we propose
an improved filtering scheme that is more robust to such
disturbances. The new scheme, called iterative fLBF (IfLBF),
can improve estimation results also when the ambient noise is
likely to contain impulsive disturbances.

II. PROBLEM FORMULATION

Consider the nonstationary finite impulse response system
governed by the following equation

y(t) =

n∑
i=1

θi(t)u(t− i+ 1) + e(t) = θθθT(t)φφφ(t) + e(t), (1)

where t = . . . ,−1, 0, 1, . . ., denotes discrete (dimensionless)
time, {y(t)} is the output signal, φφφ(t) = [u(t), . . . , u(t− n+
1)]T, denotes the regression vector, containing time-delayed
samples of the input signal {u(t)}, θθθ(t) = [θ1(t), . . . , θn(t)]

T

denotes the vector of unknown time-varying parameters, and
{e(t)} is measurement noise. Such models are very popular in
modeling both terrestrial [5] and underwater acoustic telecom-
munication channels [6], [7]. In the remainder of this paper,
we will make the following assumptions, which are typically
met in telecommunications applications
(A1) {u(t)} is a sequence of zero-mean independent and

identically distributed random variables with variance
σ2
u.

(A2) {e(t)}, independent of {u(t)}, is a sequence of zero-
mean independent and identically distributed random
variables with variance σ2

e .
(A3) {θθθ(t)}, independent of {u(t)} and {e(t)}, is a uniformly

bounded sequence.
The main contribution of this paper is application of the
iterative reweighting methods in identification of nonstationary
systems and derivation of the algortihm for adaptive choice of
the design parameters.

III. PREESTIMATION

The two-stage identification method described in this paper
consists of preestimation and postfiltering. The first stage
yields approximately unbiased but very noisy estimates of
the parameter trajectories, which need to be further processed
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to obtain reliable estimates - hence the name preestimates.
Preestimates were introduced in [1] and further analyzed in
[8]. They are based on exponentially weighted least squares
(EWLS) estimates of system parameters, defined as

θ̂θθ(t) = argmin
θθθ

t∑
i=1

λt−i[y(i)− θθθTφφφ(t)]2, (2)

where λ ∈ (0, 1) is the so-called forgetting constant. The
EWLS estimates are obtained as a solution to the following
system of linear equations

RRR(t)θ̂θθ(t) = rrr(t), (3)

where

RRR(t) =

t∑
i=1

λt−iφφφ(i)φφφT(i),

rrr(t) =

t∑
i=1

λt−iφφφ(i)y(i).

(4)

Then the preestimates are defined as

θ̃θθ(t) = L(t)θ̂θθ(t)− λL(t− 1)θ̂θθ(t− 1), (5)

where L(t) =
∑t

i=1 λ
t−i = λL(t − 1) + 1 is the effective

number of observations of the EWLS algorithm. In the steady
state, when L(t) ∼= L∞ = 1

1−λ , the preestimation formula
simplifies to

θ̃θθ(t) =
1

1− λ
[θ̂θθ(t)− λθ̂θθ(t− 1)]. (6)

Note that under the assumptions listed in the previous section,
it can be shown [9] that the mean path of the EWLS estimates
is a result of lowpass filtering the true parameter trajectories

E[θ̂θθ(t)] ∼= H(q−1)θθθ(t), (7)

where H(q−1) = 1−λ
1−λq−1 denotes the filter associated with the

EWLS method, and q−1 is a backward shift operator, namely
q−1θθθ(t) = θθθ(t−1). The EWLS estimates can be written down
as

θ̂θθ(t) ∼= H(q−1)θθθ(t) + ηηη(t), (8)

where ηηη(t) is a zero-mean noise. As a consequence, the steady-
state preestimates can be expressed as

θ̃θθ(t) ∼= θθθ(t) +
1

1− λ
[ηηη(t)− ληηη(t− 1)]. (9)

This means that the preestimates are approximately unbiased.
Since the preestimates can be seen as an effect of the “inverse”
(highpass) filtering of the EWLS estimates, the value of the
forgetting constant should be chosen carefully. A too large
value of λ will result in a larger variability of the preesti-
mation noise, while using a too small value of λ can make
the steady-state equivalent memory of the EWLS algorithm
(N∞ = 1+λ

1−λ
∼= 2

1−λ ) smaller than the number of system
parameters n, which is questionable from a statistical point
of view. Hence, the rule for choosing λ that works well in
practice turns out to be

λ = max

{
0.9, 1− 2

n

}
. (10)

Remark: It was recently noted in [11] that preestimates tend
to inherit some delay introduced by the EWLS algorithm, even
though the initial analysis suggests that they are approximately
unbiased. Methods for dealing with this delay have been
presented in [11].

IV. EWLS WITH THE DICHOTOMOUS COORDINATE
DESCENT

Recently, many numerical algorithms for solving the system
of linear equations (3) have been proposed to reduce the
numerical complexity associated with the EWLS method.
One of them is the Dichotomous Coordinate Descent (DCD)
algorithm proposed in [10]. The authors suggest to solving
numerically the system of auxiliary equations

RRR(t)∆θ̂θθ
DCD

(t) = rrr0(t), (11)

and find the estimates at the current time instant using esti-
mates from the previous time instant

θ̂θθ
DCD

(t+ 1) = θ̂θθ
DCD

(t) + ∆θ̂θθ
DCD

(t), (12)

where

rrr0(t) = ∆rrr(t)−∆RRR(t)θ̂θθ
DCD

(t− 1) + εεεr(t− 1), (13)

and ∆rrr(t) = rrr(t)− rrr(t− 1), ∆RRR(t) = RRR(t)−RRR(t− 1),

εεεr(t) = rrr(t)−RRR(t)θ̂θθ
DCD

(t). (14)

Note, however, that the preestimates obtained using the DCD
algorithm will have a larger variability of estimation errors
because the combination of (3) and (14) yields

θ̂θθ
DCD

(t) = θ̂θθ(t)− δδδ(t), (15)

where δδδ(t) = RRR−1(t)εεεr(t), which leads to

θ̃θθ
DCD

(t) =
1

1− λ
[θ̂θθ

DCD
(t)− λθ̂θθ

DCD
(t− 1)]

∼= θθθ(t) +
1

1− λ
[zzz(t)− λzzz(t− 1)],

(16)

where zzz(t) = ηηη(t) − δδδ(t) is a noise of a larger variance than
ηηη(t).

Furthermore, because the solution to the system of auxiliary
equations (11) provided by the DCD algorithm uses a very
limited number of bits, the errors are of a similar nature to
quantization errors. This fact, combined with the highpass
nature of preestimation algorithms, causes the distribution
of preestimation errors to have heavier tails when the DCD
algorithm is used. Therefore, later in the paper, we propose
an iterative reweighting technique to improve the accuracy
of the final estimates obtained after filtering the DCD-based
preestimates.
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V. POSTFILTERING

Due to the large variability of the preestimation noise, it
is necessary to perform additional filtering in order to obtain
statistically meaningful results. The method proposed in [1]
is a Savitzky-Golay filtering [12]. Assume that locally, within
the analysis window Tk(t) = [t − k, t + k] centered around
the current time t, each parameter trajectory can be modeled
as a linear combination of m known functions of time, called
basis functions

θj(t+ i) = fffT(i)αααj(t), j = 1, . . . , n, i ∈ Ik = [−k, k],
(17)

where fff(i) = [f1(i), . . . , fm(i)]T, i ∈ Ik is a vector of basis
functions and αααj(t) = [αj1, . . . , αjm(t)]T, j = 1, . . . , n, i ∈
Ik is a vector of basis function coefficients.

The final fLBF estimates are defined as follows

α̂αα
fLBF
j (t) = argmin

αααj

k∑
i=−k

w(i)[θ̃j(t+ i)− fffT(i)αααj ]
2

θ̂fLBF
j (t) = fffT(0)α̂αα

fLBF
j (t), j = 1, . . . , n,

(18)

where w(i), i ∈ Ik is typically a nonnegative, bell-shaped
weighting sequence, obeying w(0) = 1, used to put more
emphasis on data closer to the center of the analysis window.

It is easy to check that

θ̂fLBF
j (t) =

k∑
i=−k

h(i)θ̃j(t+ i), j = 1, . . . , n, (19)

where h(i), i ∈ Ik is the impulse response associated with
the basis functions

h(i) = fffT(0)

[
k∑

i=−k

w(i)fff(i)fffT(i)

]−1

w(i)fff(i), i ∈ Ik.

(20)
It was shown in [1] that, under the assumptions listed above,
the fLBF estimates closely approximate the estimates obtained
by the computationally more demanding LBF method [2].

VI. ITERATIVE REWEIGHTED FLBF (IFLBF)
The least absolute deviation (LAD) method is a well-

known method for robustifying the estimation results when
the presence of outliers in the output signal is suspected [13],
[14], [15]. It also turns out that LAD is a maximum likelihood
estimator when the noise obeys the Laplace distribution [13].
A step towards the application of this type of regression in
identification was made in [16] for stationary systems. In the
aforementioned article the well-known iterative reweighting
technique [17], [18] was used. Applying such a method to the
identification of nonstationary systems with the original LBF
estimator would be computationally expensive. Here we show
how to incorporate iterative reweighting to make the identifi-
cation process more robust while keeping the computational
complexity proportional to the number of system parameters.
Note that the ℓ1 cost function

Jj(t) =

k∑
i=−k

|θ̃j(t+ i)− fffT(i)αααj |, j = 1, . . . , n, (21)

can be approximated as

Jj(t) =

k∑
i=−k

[θ̃j(t+ i)− fffT(i)αααj ]
2

|θ̃j(t+ i)− fffT(i)αααj |

=

k∑
i=−k

[θ̃j(t+ i)− fffT(i)αααj ]
2

|θ̃j(t+ i)− θj(t+ i)|

∼=
k∑

i=−k

wI
j(t+ i)[θ̃j(t+ i)− fffT(i)αααj ]

2, j = 1, . . . , n,

(22)

where the weighting sequence is defined as wI
j(t) =

1
|εj(t)| , i ∈ Ik, j = 1, . . . , n, and

|εj(t)| = max{|θ̃j(t)− θ̂fLBF
j (t)|, ε0}, j = 1, . . . , n, (23)

where ε0 is a small positive constant introduced to avoid
numerical problems. Minimizing such a cost function yields
an iterative reweighted fLBF (IfLBF) estimate

α̂αα
IfLBF
j (t) = argmin

αααj

k∑
i=−k

wI
j(t+ i)[θ̃j(t+ i)− fffT(i)αααj ]

2

θ̂IfLBF
j (t) = fffT(0)α̂αα

IfLBF
j (t), j = 1, . . . , n.

(24)

Similar to the fLBF case, the final estimates can be expressed
as

θ̂IfLBF
j (t) =

k∑
i=−k

hI
j(t, i)θ̃j(t+ i), j = 1, . . . , n, (25)

where the corresponding impulse response is time-dependent

hI
j(t, i) = fffT(0)

[
k∑

i=−k

wI
j(t+ i)fff(i)fffT(i)

]−1

×

× wI
j(t+ i)fff(i), i ∈ Ik, j = 1, . . . , n.

(26)

Note that, unlike in the typical reweighting methods, here
we use the global estimation errors θ̃j(t + i) − θ̂fLBF

j (t +
i), i ∈ Ik, j = 1 . . . , n, instead of local estimation errors
θ̃j(t + i) − fffT(i)α̂αα

IfLBF
j (t), i ∈ Ik, j = 1 . . . , n, which can

lead to better accuracy of the IfLBF estimates.
Note also that the proposed iterative method increases the

computational complexity of the final algorithm, which is still
proportional to the number of system parameters n.

VII. HYPERPARAMETER OPTIMIZATION

In the case of the IfLBF algorithm, one must decide on
the value of the constant ε0, which can seriously affect the
quality of the final estimates. One can develop a technique
similar to the leave-one-out cross-validation described in [1].
In this approach, one runs several algorithms in parallel, each
with different constants ε0 ∈ E = {ε10, . . . , εL0 }, and at each
point in time one chooses the algorithm that minimizes the
local sum of squared leave-one-out interpolation errors

J0(t) =

M∑
i=−M

[ϵ0(t+ i|ε0)]2, (27)
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where ϵ0(t|ε0) = y(t)−φφφT(t)θ̂θθ
IfLBF

0 (t|ε0), and

α̂αα
IfLBF
j,0 (t|ε0) = argmin

αααj

k∑
i=−k
i ̸=0

wI
j(t+ i|ε0)[θ̃j(t+ i)− fffT(i)αααj ]

2

θ̂IfLBF
j,0 (t|ε0) = fffT(0)α̂αα

IfLBF
j,0 (t|ε0), j = 1, . . . , n.

(28)

Using the well-known Sherman-Morrison formula [19], one
can show that

θ̂IfLBF
j,0 (t|ε0) =

1

1− βj(t|ε0)
[θ̂fLBF

j (t|ε0)− βj(t|ε0)θ̃j(t)],

j = 1, . . . , n,
(29)

where βj(t|ε0) = wI
j(t|ε0)fffT(0)FFF

−1
j (t|ε0)fff(0), and

FFFj(t|ε0) =
∑k

i=−k w
I
j(t+ i|ε0)fff(i)fffT(i). Note that using the

results of the averaging theory [20], one obtains

β0 = E[βj(t|ε0)] ∼= fffT(0)

[
k∑

i=−k

fff(i)fffT(i)

]−1

fff(0), (30)

which stems from the fact that under assumptions listed
above, the fLBF estimator is approximately unbiased [1],
hence E[wI

j(t|ε0)] ∼= 1
ε0

. Therefore, one can use the simplified
formula for adaptation

θ̂IfLBF
j,0 (t|ε0) ∼=

1

1− β0
[θ̂fLBF

j (t)− β0θ̃j(t)], j = 1, . . . , n,

(31)
Note that the same procedure can be incorporated to choose

the length of the analysis interval K = 2k+1 and the number
of basis functions m.

VIII. COMPUTER SIMULATIONS

The algorithms described in this paper have been tested on
a two-tap FIR system

y(t) = θ1(t)u(t) + θ2(t)u(t− 1) + e(t), (32)

which parameter trajectories are shown in Fig. 1 The input
signal {u(t)} was a white Gaussian noise. The simulations
were performed for two signal-to-noise (SNR) ratios - 10 dB
and 20 dB, corresponding to the variance of the measurement
noise {e(t)} (which was white Gaussian and independent
of the input signal) equal to σ2

e = 0.1 and σ2
e = 0.01,

respectively. In our simulations, Legendre polynomials were
used as basis functions with m = 5. The rectangular weighting
sequence (w(i) ≡ 1, i ∈ Ik) was used with the fLBF
algorithm.

The table I shows the mean squared estimation errors (MSE)
(in decibels) averaged over T = 5000 time samples (to avoid
boundary problems, data generation started 500 samples before
t = 1 and ended 500 samples after t = 5000) and 100
independent realizations of the measurement noise. The value
of the constant ε0 was chosen from the set of candidates
E = {0.5, 0.05, 0.005, 0.0005}, and the length of a local
decision window 2M + 1 was set to 61. The algorithms with

Fig. 1. True parameter trajectories of a simulated time-varying system.

the abbreviation DCD were based on the preestimates obtained
with the DCD algorithm. To compute the EWLS estimates
based on the DCD algorithm, we used the following settings:
H = 1, Mb = 16, Nu = 4 (see [10] for details). In the table,
“A” denotes the exact adaptive algorithm using (29), while
“A0” denotes the simplified adaptive algorithm using (31).

In the second simulation, we used the same setup except for
the noise, which this time followed the Student’s t-distribution
with 3 degrees of freedom. Such a distribution is characterized
by the presence of outliers, which can degrade the quality
of the estimates. Again, the noise variance was set to σ2

e =
0.1 and σ2

e = 0.01, corresponding to SNRs of 10 and 20
dB, respectively. The resulting MSE values in decibels are
shown in table II. The simulation results show that the adaptive
algorithms (both the exact (29) and the simplified (31)) provide
estimates of comparable quality to the best of the algorithms
included in the parallel scheme. Moreover, the proposed IfLBF
estimator can significantly improve the estimation accuracy
when the numerical algorithms are used to compute the EWLS
estimates or in the presence of outliers in the measurement
noise. The improvement is particularly noticeable at low SNR
values. When the exact values of the EWLS estimates are used
and there are no outliers in the measurement noise, the IfLBF
algorithm provides estimates of slightly inferior quality.

IX. CONCLUSION

This paper presents the new iterative reweighted fLBF
algorithm for the identification of nonstationary systems. The
proposed method can improve the estimation results in the
presence of strong noise with outliers, or when the numerical
algorithms are used to find the preestimates. We also propose
an adaptive algorithm, based on leave-one-out cross-validation,
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TABLE I
MSE [DB] AVERAGED OVER TIME AND 100 INDEPENDENT REALIZATIONS
OF GAUSSIAN MEASUREMENT NOISE, FOR A TIME-VARYING TWO-TAP FIR

SYSTEM. “A” DENOTES THE EXACT ADAPTIVE ALGORITHM USING (29),
“A0” DENOTES THE SIMPLIFIED ADAPTIVE ALGORITHM, USING (31).

k

SNR [dB] Algorithm ε0 40 80 120 160

10

fLBF -19.72 -22.78 -24.50 -25.13

IfLBF

0.5 -19.49 -21.79 -23.02 -23.30
0.05 -19.76 -21.99 -23.12 -23.04
0.005 -20.03 -22.67 -24.05 -23.84

0.0005 -20.00 -22.73 -24.19 -23.85

A -19.76 -22.18 -23.42 -23.28
A0 -19.77 -22.18 -23.42 -23.28

DCD + fLBF -17.97 -21.05 -22.70 -23.52

DCD + IfLBF

0.5 -18.80 -21.50 -23.06 -23.65
0.05 -19.18 -22.01 -23.64 -23.85
0.005 -19.11 -22.12 -23.79 -23.89

0.0005 -19.04 -22.03 -23.67 -23.62

A -19.08 -21.97 -23.58 -23.68
A0 -19.07 -21.96 -23.57 -23.68

20

fLBF -27.35 -30.91 -32.52 -30.70

IfLBF

0.5 -26.83 -29.45 -30.47 -29.04
0.05 -24.89 -26.25 -26.58 -25.59
0.005 -26.08 -28.24 -28.82 -27.10

0.0005 -26.19 -28.68 -29.45 -27.17

A -25.76 -27.60 -28.04 -26.52
A0 -25.75 -27.60 -28.03 -26.52

DCD + fLBF -23.59 -26.15 -27.40 -27.37

DCD + IfLBF

0.5 -24.86 -27.49 -29.03 -28.70
0.05 -25.24 -28.03 -29.46 -28.29
0.005 -25.32 -28.38 -29.87 -28.25

0.0005 -25.19 -28.15 -29.45 -27.58

A -25.27 -28.24 -29.75 -28.22
A0 -25.27 -28.23 -29.74 -28.22

for choosing the constant ε0, which yields estimates with
accuracy comparable to the accuracy of the best estimator
involved in the parallel scheme. Furthermore, we have shown
that the simplified version of this adaptive algorithm yields
results that are almost indistinguishable from the exact version.
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