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Abstract—We present an efficient online kernel-based quantile
regression scheme based on the Moreau envelope of the pinball
loss, which we call the Huberized pinball loss. The use of the
Moreau envelope is motivated by the popular Huber loss, which
is the Moreau envelope of the least absolute deviation in robust
estimation. We show that the smooth Huberized pinball loss ex-
hibits more robust learning behaviours than the ordinary pinball
loss in some scenarios, while the discrepancy of its minimizer
from the true quantile is bounded by constants dependent on the
Moreau-envelope parameter. Numerical examples show that the
proposed scheme achieves better and more stable performances
than a pinball-loss-based online method.

I. INTRODUCTION

Quantile regression [1]–[3] is a task of identifying an
interval in which a prespecified fraction of data reside. It has
been gaining growing attention because it tends to provide
remarkably robust estimates. Estimation of “uncertainty (inter-
val)” instead of an accurate estimate (point), is crucial in many
applications including credit risk prediction [4], [5], wind
power forecasting [1], [6], [7], and survival analysis [8]. There
exist three popular batch methods: quantile regression forest
[2], kernel quantile regression [9], and quantile regression
neural network [3]. Those methods are known to work well in
the sense of yielding an interval that is both reasonably narrow
and contains the desired fraction of data. However, if data are
contaminated by outliers, the distribution of the output spreads,
making the intervals estimated by those methods undesirably
wide. In this regard, the robustness of those methods is limited.

The “uncertainty” in the current context depends on the
distribution of perturbations (disturbance, noise, outlier, etc.).
In signal processing applications, the distribution may change
over time. In such a case, the performance of batch methods
for quantile regression is degraded seriously. In the present
study, we therefore address the online quantile regression prob-
lem where the relation between input and output is nonlinear.

The study in [1] proposes an online quantile regression
method that uses kernels and a subgradient method to min-
imize the so-called pinball loss [10]. Here, the pinball loss
is known to give an “empirical” counterpart of the αth
quantile for α ∈ (0, 1) [9] (see Lemma 1 in Section II-B),
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where the αth quantile is the smallest possible value for
which the conditional probability of the output given an input
measurement is at least α. Its use in the online case, however,
may cause unstable performance in certain scenarios where
the noise distribution changes during some time slots (see
Section III-A). A smooth relaxation of the pinball loss has
also been proposed [11] so that the standard gradient method
can be applied. Unfortunately, it lacks theoretical verification
of producing quantiles, and its performance with respect to
the coverage accuracy leaves room for improvements.

In this study, we propose an online quantile regression
method based on the multikernel adaptive filtering framework.
To alleviate the instability mentioned above, we replace the
pinball loss function by its Moreau envelope [12], which we
call Huberized pinball loss. The idea of this relaxation comes
from the analogy to the relation between the least absolute
deviation (LAD) and the Huber loss (which is the Moreau
envelope of the LAD) in robust statistics [13]. The Huberized
pinball loss is a smooth function, whereas the pinball loss
is nonsmooth. This smoothness property is advantageous in
online scenarios because the computationally efficient gradient
method can be applied. We also derive upper and lower bounds
of the discrepancy between the αth quantile and the minimizer
of the Huberized pinball loss, where the bounds depend on
α and the Moreau-envelope parameter. Simulations show the
superiority of the proposed loss compared to the ordinary
pinball loss in the online case.

II. PRELIMINARIES
The sets of real numbers and nonnegative integers are de-

noted by R and N, respectively. Scalars, vectors, and matrices
are denoted by lowercase letters, lowercase boldfaced letters,
and uppercase boldfaced letters, respectively. The transpose of
a matrix or a vector is denoted by (·)⊤.

A. System model and problem statement
Let X ⊂ Rd and Y ⊂ R denote the input space and

the output space, respectively. Let (xi)
∞
i=1 be a sequence of

random input vectors taking values in X , and the contaminated
outputs

yi := ψ(xi) + ϵi + oi (1)

arrive sequentially, taking values in Y . Here, ψ : Rd → R is
an unknown nonlinear function, ϵi is Gaussian noise taking
values in R, and oi is the outlier which is sparse in time but
has large magnitude.
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The goal of quantile regression is to find an interval in which
the random observations yi, perturbed by noise and outliers,
occur with a prespecified probability β ∈ (0, 1). We suppose
for simplicity that the interval is desired to be located in the
center of the distribution, so that data residing outside the
interval are equally distributed below and above the interval.
To be more specific, we define the αth quantile for some given
α ∈ (0, 1) by

qα(x) := inf {y ∈ Y : F (y | x) ≥ α} , x ∈ X , (2)

where F (y | x) is the conditional distribution of y given x.
Then, the objective is to estimate the upper and lower quantiles
qα+

and qα− for α+ := (1 + β)/2 ∈ (0, 1) and α− := (1 −
β)/2 ∈ (0, α+) to obtain the desired interval [qα− , qα+

]. The
difference β(= α+−α−) is referred to as the target coverage
rate.

B. Pinball loss function
As common in regression methods, practical approaches to

the quantile regression task rely on an empirical loss defined
with observed data. Specifically, given n ∈ N samples, let us
consider the regularized pinball loss [9], [10], [14]:

Rreg(g, b) :=

n∑
i=1

ρα(yi−g(xi)−b)+
λ

2
‖g‖2H , g ∈ H, b ∈ R,

(3)
where (H, 〈·, ·〉 , ‖·‖H) is a reproducing kernel Hilbert space,
λ > 0 is the regularization parameter, and

ρα : R → [0,+∞) : z 7→

{
αz if z ≥ 0,

−(1− α)z if z < 0.
(4)

Note here that the offset term b is not regularized. The
particular choice α = 0.5 reduces the pinball loss to the
LAD, yielding the median. In this sense, the pinball loss is
a generalization of LAD, and it induces robust estimates in
the presence of outliers. For readers’ convenience, we present
a theoretical result known in the literature below.

Lemma 1 ([9]). Let (g⋆, b⋆) ∈ H×R be the minimizer of the
Rreg(g, b). Then, the following statements hold (|S| denotes
the cardinality of a set S).

1)
∣∣{i ∈ 1, n := {1, 2, · · · , n} : yi < g⋆(xi) + b⋆}

∣∣ ≤ αn.
2)
∣∣{i ∈ 1, n : yi > g⋆(xi) + b⋆}

∣∣ ≤ (1− α)n.
3) Assume that xi and yi are i.i.d. with F (x | y) con-

tinuous and the expectation of the modulus of absolute
continuity of its density satisfying limδ→0E(ϵ(δ)) = 0.
Then, limn→∞

∣∣{i ∈ 1, n : yi < g⋆(xi) + b⋆}
∣∣ /n = α

with probability 1.

III. PROPOSED ONLINE METHOD

We start by introducing a smooth relaxation of the pin-
ball loss by using its Moreau envelope, and we show that
the smoothed loss yields an approximation of quantile. This
relaxation not only simplifies the optimization process, but it
also makes the online method robust against changes in the
noise distribution that may happen during some time slots.
We then present the proposed kernel-based method using the
relaxed pinball function.

A. Huberized pinball loss
Simple algorithms are desirable in online implementations,

so the subgradient method is typically used to minimize
a cost function based on the pinball loss [1]. The pinball
loss, however, increases linearly when one deviates from the
minimizer, and therefore it is sensitive to small deviations. To
illustrate a potential issue due to this property, let us consider
the case when the noise distribution changes in a way that
noise happens in the positive region more frequently than in
the negative region during some time slots. In this case, the
quantile estimates are updated more in the upward direction
than in the downward direction. These updates may cause
serious estimation errors.

To avoid the above situation, we focus on the similarity
between the pinball loss and LAD (the ℓ1 norm). The popular
Huber loss is less sensitive to small perturbations than LAD,
because it is a quadratic function in the vicinity of the
minimizer. Based on this analogy, we use the Moreau envelope
of the pinball loss ρα(x), defined as follows:

γρα(z) := min
u

(
ρα(u) +

1

2γ
‖u− z‖22

)

=


αz − α2γ

2
z ≥ αγ,

1

2γ
z2 −(1− α)γ < z < αγ,

−(1− α)z − (1− α)2γ

2
z ≤ −(1− α)γ,

(5)

which we call the Huberized pinball loss.
As explained above, the Huberized pinball loss is motivated

by online algorithms using (sub)gradient. Now, considering the
asymptotic behaviour of online algorithms, a natural question
would be the following: does the Huberized pinball loss γρα
give an efficient estimate of the αth quantile? The following
proposition gives an answer to this fundamental question.

Proposition 1 (Huberized pinball loss and αth quantile).
Assume that y is an integrable random variable, where the in-
tegrability is defined with respect to a probability measure. As-
sume also that the cumulative distribution F of y is a strictly-
increasing continuous function. Let q̂α ∈ argmin

q∈R
Ey[

γρα(y −

q)]. Then, it holds that

−(1− α)γ ≤ qα − q̂α ≤ αγ. (6)

Proof. We first show the following equality:

1

γ

∫ q̂α+αγ

q̂α−(1−α)γ

F (y)dy = α. (7)

Let I ⊂ Y be a bounded open interval that is supposed to be
sufficiently wide. Let mY be the probability distribution, i.e.,
Ey(h(y)) =

∫
Y h(y)mY(dy) for any measurable function h.

The function g(y, q) := γρα(y − q) on Y × I is integrable in
terms of y for an arbitrarily fixed q ∈ I, and it is partially
differentiable with respect to q given any y. In addition, it
is not difficult to verify that

∣∣∣∂g∂q (y, q)∣∣∣ ≤ 1 =: M(y) for
all q ∈ I, where

∫
Y |M(y)|mY(dy) = 1 < +∞. Hence,
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G(q) := Ey(g(y, q)) =
∫
Y g(y, q)mY(dy) is differentiable

w.r.t. q, and it holds [15, Theorem 14.2] that ∂
∂qEy(g(y, q)) =

Ey(
∂g
∂q (y, q)). Because the expectation Ey[

γρα(y − q)] of the
measurable convex function γρα(y − q) is a convex function
[16, Proposition 8.24], the function G given y is minimized
when the following equality holds:

Ey

(
∂g

∂q
(y, q)

)
= 0. (8)

Note here that γρα(y − q) ≥ 0 over Y × I to ensure the
convexity as the zero function is absolutely integrable. With
some manipulations, one can show that Ey

(
∂g
∂q (y, q)

)
=

−α + 1
γ

∫ q̂α+αγ

q̂α−(1−α)γ
F (y)dy, which together with (8) implies

the equality in (7).
We conclude from (7) that the (strictly) increasing function

F must satisfy F (q̂α − (1−α)γ) ≤ α ≤ F (q̂α +αγ). Hence,
due to the continuity of F , there exists a unique qc ∈ [q̂α −
(1 − α)γ, q̂α + αγ] such that F (qc) = α. It is clear that the
qc coincides with the αth quantile qα, and we thus obtain the
desired inequality (6).

Proposition 1 states that the minimizer q̂α of the Huberized
pinball loss is in the neighbor of the α quantile qα with radius
vanishing as γ tends to zero.1

B. Online quantile kernel regression (OQKR)

The Gaussian kernel with width σ > 0 is defined by

k : X × X → [0,+∞) : (x, x̂) 7→ exp

(
−
‖x− x̂‖22

2σ2

)
, (9)

where ‖·‖2 is the Euclidean norm. Let {k(·, ξ1), k(·, ξ2),
· · · , k(·, ξr)} be the dictionary with ξ1, ξ2, · · · , ξr ∈ X
selected from the observed input vectors based on some
novelty criterion in an online manner [17], [18]. Note that the
size r and the vectors ξi themselves may change over time in
practice (see [17], [18] for details).

Define the kernelized input vector k(x) :=
[k(x, ξ1), k(x, ξ2), · · · , k(x, ξr)]⊤ ∈ Rr. Given any
x ∈ X , the kernel adaptive filter is given by

ψ̂w(x) := w⊤k̃(x), (10)

where w ∈ Rr+1 is the weight vector, and k̃(x) :=
[k(x)⊤ c]⊤ ∈ Rr+1 is the kernelized input vector, where

c :=
√
E(‖k(xi)‖22)/r is a constant corresponding to the

offset variable. Note here that k(xi) is a random vector as
xi is so. The scalar c reduces the eigenvalue spread of the
autocorrelation matrix of k̃(x). As such, the last entry of w
(i.e., the offset variable) converges at nearly the same speed
as the other entries.

The smooth cost function is then given by

Θα(w) := E
(
γρα(yi −w⊤k̃(xi))

)
(11)

1If y ∈ Y follows a uniform distribution, it is immediate to verify from
Proposition 1 that q̂α(x) = qα(x) + γ

(
1
2
− α

)
.

of which the minimizer ŵ = argmin
w

Θα(w) gives the

estimate q̂α(x) = ŵ⊤k̃(x) of the αth quantile. Here, E(·)
stands for expectation taken with respect to the input vector
xi ∈ X , the noise ϵi, and the outlier oi. Given an initial guess
w0 ∈ Rr, the stochastic gradient descent method to minimize
the smooth cost function γΘα is given by

wt+1 := wt − µ∇w
γρα(yt −w⊤

t k̃(xt))

= wt + µ clipα

(
yt −w⊤

t k̃(xt)

γ

)
k̃(xt), (12)

where µ > 0 is the step size, and

clipα :R → [−(1−α), α] :x 7→


α, x > α,

x, x ∈ [−(1− α), α],

−(1− α), x < −(1− α).

C. Online quantile multikernel regression (OQMkR)

We now consider the use of multiple kernels to enhance the
accuracy and the convergence speed. The Gaussian kernels
with different widths σ1 > σ2 > · · · > σQ > 0 are defined by

kq : X × X → [0,+∞) : (x, x̂) 7→ exp

(
−
‖x− x̂‖22

2σ2
q

)
.

(13)
For each q ∈ 1, Q, we define the dictionary {kq(·, ξq,1),
kq(·, ξq,2), · · · , kq(·, ξq,r)} with ξq,1, ξq,2, · · · , ξq,r ∈ X .
Given an input vector x ∈ X , we define the kernelized input
vectors

kq(x) := [kq(x, ξq,1), kq(x, ξq,2), · · · , kq(x, ξq,r)]⊤ ∈ Rr.
(14)

We also define its augmented version k̃q(x) ∈ Rr in an
analogous way to the previous subsection. Our estimate of
the αth quantile is then given by

ψ̂w(x) :=

Q∑
q=1

w⊤
q k̃q(x), (15)

where wq ∈ Rr+1 is the weight vector. By defining w :=
[w⊤

1 w⊤
2 · · · w⊤

Q]
⊤ ∈ R(r+1)Q and k̃(x) = [k̃⊤

1 (x) k̃⊤
2 (x)

· · · k̃⊤
q (x)]

⊤ ∈ R(r+1)Q, (15) reduces to (10). The cost
function is then given by the same form as in (11) but for
w ∈ RrQ, and the estimate wt ∈ R(r+1)Q is updated by the
same recursion as given in (12) accordingly.

IV. NUMERICAL EXAMPLES

We evaluate the performance of the proposed method in
comparisons with the existing methods for the following
function:

ψ(x) := 4c1exp

(
− (x− η1)

2

2σ2
1

)
+ 2c2exp

(
− (x− η2)

2

2σ2
2

)
,

where c1, c2, η1, η2 ≥ 0 are constants drawn from the uniform
distribution U [0, 1], and σ1 := 0.1 and σ2 := 0.3 (d := 1
so that X ⊂ R). The noise ϵi follows the zero-mean normal
distribution with variance σ2

ϵ (x) := (|x|+ 0.3)2 at each point
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x ∈ X . The nonzero outliers obey the zero-mean normal
distribution with variance σ2

o = 1.0× 103.
We use two performance measures. The first mea-

sure is the estimation errors of the upper quantile
(those of the lower quantile can be defined analo-
gously) Quantile Estimation Error := (

∫
(qα+

(x) −
q̂α+

(x))2dx)/(
∫
(qα+

(x))2dx). The second one is the actual
coverage rate indicating the proportion of the observations
that are included in the estimated interval relative to the total
observations: Coverage := 1

n

∑n
i=1 1C(yi), where 1C(yi) ={

1 if yi − oi ∈ C := [qα−(xi), qα+
(xi)],

0 otherwise.
The coverage rate

is desired to be close to the prespecified rate β; Coverage > β
and Coverage < β imply overcoverage and undercoverage,
respectively.

A. Case of no distribution change of ϵi
The outlier rate is set to 0.02 ; i.e., the outlier occurs with

probability 0.02. The proposed methods are compared with the
online kernel-based method with the pinball loss [1] for the
target coverage rate β := 0.95 (α+ := 0.975, α− := 0.025).
For the proposed methods, γ := 0.5 and µ := 5.0 × 10−3

are used by manual tuning. For the multikernel version, the
number of kernels is set to Q := 2 with σ2

1 := 2.5 × 10−3

and σ2
2 := 0.01. For the pinball loss, the same step size µ :=

5.0× 10−3 is used.
Figure 1 shows the learning curves. In the estimation error,

(i) the proposed Huberized pinball loss function outperforms
the ordinary pinball loss, and (ii) the use of multiple kernels
further improves the convergence speed. The improvements
come from the smoothness of the proposed loss. More pre-
cisely, the subgradient method for the pinball loss with fixed
step size fluctuates largely in the vicinity of the true quantile,
whereas the gradient of the proposed method vanishes as the
estimate approaches the minimizer of the loss because of its
smoothness. Moreover, the multikernel version of the proposed
method works better than the single kernel version owing to
its flexibility. In the actual coverage rate, the proposed method
achieves comparable performance to the pinball loss. This fact
indicates that the proposed methods yield efficient estimates
of the αth quantile despite the relaxation, just as expected in
light of Proposition 1.

B. Changing the distribution of ϵi at some points
To evaluate the robustness of the proposed loss function,

we consider noise distributed asymmetrically during iterations
6000 – 6500 and 8000 – 8500, and it is normally distributed
during other iterations. More precisely, the noise ϵi takes the
positive sign at the rate 0.7 during iterations 6000 – 6500,
while it takes the negative sign at the same rate 0.7 during
iterations 8000 – 8500. In this subsection, we solely consider
the single kernel version. We test γ := 0.1, 0.2, 0.3, 0.4, 0.5 as
γ governs the sensitivity of the proposed method to noise.

Figure 2 shows the results. It is seen that the proposed
method with a sufficiently large γ shows stable performance
in the quantile estimation errors, because the gradient tends
to be small around the minimizer of the loss. Note that a
smaller γ makes the proposed loss closer to the pinball loss.

The error in coverage rate increases slightly as γ increases;
this is consistent with Proposition 1.

In contrast to the stable performance of the proposed loss,
the pinball loss suffers from instability. More precisely, the
estimation error of the upper quantile for the pinball loss
increases during the first period of distribution change (6000
– 6500), and those of the lower quantile increase during the
second period (8000 – 8500). As opposed to those phenomena,
the former errors for the first period and the latter ones for
the second period decrease. This can be explained as follows.
In fact, owing to the asymmetry of the noise distribution
in the first period, the quantile estimate is pushed in the
upward direction, while it is pushed in the downward direction
in the second period. As a result, the upper quantile is
overestimated during the first period, and this overestimation
is alleviated in the second period. On the other hand, the lower
quantile tends to be underestimated; this could be because of
the definition of the quantile using the infimum. Hence, the
underestimated lower quantile is pushed upwards in the first
period, and its error decreases accordingly. In summary, the
“going up-and-down” phenomena in estimation error show that
the subgradient algorithm using the pinball loss is sensitive to
the distribution changes considered in this section.

V. CONCLUSION

We presented an efficient online quantile regression scheme
with multiple kernels based on the Huberized pinball loss
function. The Huberized pinball loss function provides an
efficient estimate in the sense of a bounded error from the α
quantile with the lower and upper bounds given by −(1−α)γ
and αγ, respectively. Numerical examples showed that the
superior performance of the proposed scheme compared to
the pinball-loss-based online method. We emphasize that, in
contrast to the ordinary pinball loss, the Huberized pinball loss
exhibited robust performance under the distribution changes of
noise.
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8000 – 8500 for β = 0.95 and outlier rate 0.02 (the single kernel version is
used for the proposed method).
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