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Abstract—Multitarget tracking (MTT) with radar is challeng-
ing due to the radar’s low-resolution noisy clutter-prone observa-
tion data. Classical approaches employ data association filters to
deal with clutter and interference, but they are highly complex.
This paper presents an improved Gaussian mixture probability
hypothesis density (GM-PHD) multi-target tracking pipeline. The
proposed GM-PHD solution considers (i) radar bounding-box-
based measurements, (ii) a clutter model for radar observations,
and (iii) robust target identification. Using both simulated and
experimental scenarios, these contributions are proven to improve
the tracking performance in terms of robustness against noise
and clutter, as well as target identification. The significance of
the presented MTT scheme lies in its low complexity since it
does not need any data association. This makes it applicable for
intense high-level applications for which MTT is used.

Index Terms—Frequency modulated continuous wave
(FMCW); Gaussian mixture (GM); multiple-input-multiple-
output (MIMO); multi-target tracking (MTT); probability
hypothesis density (PHD) filter; radar.

I. INTRODUCTION

RADARS were initially used for target detection and
ranging [1]. They provide information on the existence of

targets in different ranges and angles with limited resolution.
The information can then be used for instantaneous tracking
of targets via an appropriate multitarget tracking (MTT) al-
gorithm [2]. Classical approaches tackle MTT by applying a
single target Kalman Filter (KF) — or one of its extensions
such as extended KF (EKF) or unscented KF (UKF) — on
each detected state along with an appropriate data association
filter. Moreover, they do pruning of less likely states and merge
close states to avoid exploding the number of states. Popular
MTT algorithms are multiple hypotheses tracking (MHT) [3]
and joint probabilistic data association filter (JPDAF) [4].

JPDAF computes the joint probabilities of correct associa-
tion and uses them to update each track. Alternatively, MHT
establishes a hypothetical track per valid measurement and
treats each track independently. In JPDAF and MHT, a mul-
titarget state is represented by vectors which pose limitations
for calculating the estimation error, mainly when the estimated
number of states differs from the actual one. To alleviate this
drawback, Mahler in [5] adopted finite set statistics (FISST)
for MTT and derived the Bayesian filter recursion based on the
probability hypothesis density (PHD) function that propagates
the posterior intensity function.

The research leading to these results has received funding
from IMEC.ICON and Flanders Innovation & Entrepreneurship (nr
HBC.2020.3106) – Project Surv-AI-llance.

Approximating the intensity function as a mixture of Gaus-
sian components makes the PHD recursion tractable and gives
rise to the Gaussian mixture (GM) PHD filter [6], [7]. The
PHD filters, including GM-PHD, essentially do not need any
data association filter1. Hence, they are computationally lighter
than the classical MTT approaches [2], [9].

During recent decades, the advances in small-size multiple-
input-multiple-output (MIMO) radars in mm-wave frequencies
have significantly improved the radar resolution and made
them an indispensable robust sensing unit in civilian appli-
cations such as automotive industry [10] and smart homes
[11]. However, a higher radar resolution gives multiple range-
Doppler (or range-azimuth) bins per target, giving rise to so-
called extended targets. At the same time, the MTT algorithms
are used to assume one measurement per target. While algo-
rithms exist for extended target tracking [12], they are com-
plex. They may not be appropriate for edge applications (e.g.,
automotive) where tracking is only a part, and the complexity
should be avoided due to the edge resource limitations. A less
complex alternate is to cluster targets and represent each target
by the centroid of its cluster [11].

In this paper, we improve the GM-PHD filter for radar multi-
target tracking. The contributions presented in this paper are
as follows:

• To the extent of the authors’ knowledge, this is the first
published PHD-based MTT pipeline, including the whole
signal processing chain for a MIMO-FMCW radar;

• We propose a clutter model based on the radar observa-
tion data. This clutter model results in better calculations
of the weights of the Gaussian components and brings
more robustness;

• We propose to modify the radar measurements, namely,
the range and velocity, based on the bounding boxes
indicating the point cloud intervals of each target. To
this end, we generate an association matrix based on
the likelihood of each measurement given the predicted
measurements and select the most appropriate cluster
point instead of its centroid;

• The effectiveness of the proposed radar MTT pipeline is
shown through both simulated and experimental scenarios
using a MIMO-FMCW radar to track pedestrians.

1Though data association is used in some works to improve tracking track
identities (e.g., [8]), it is optional.
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II. BACKGROUND

A. FMCW radar basics

A Frequency-Modulated Continuous-Wave (FMCW) radar
uses a continuous wave (CW) signal that is frequency-
modulated over a certain bandwidth B:

schirp(t) = ac exp
[
j2π

(
fc +

α

2
t
)
t
]
Π(t/Tc) , (1)

where ac and Tc respectively denote the amplitude and the
period of the transmitted chirp, α = B/Tc is its frequency
slope, and Π(t/Tc) equals 1 for 0 < t < Tc and 0 elsewhere.
A target then reflects the transmitted signal, and the received
signal is mixed with the original transmitted signal to generate
the beat signal, whose frequency is shifted due to the target’s
range and range rate. In sufficiently high bandwidths, the
beat signal becomes separable in fast time (indicating intra-
chirp samples) and slow time (indicating inter-chirp samples).
This allows applying a 2D Fourier transform (FT) along the
fast and slow times to obtain the range-Doppler (RD) map
corresponding to the target(s).

In multiple-input-multiple-output (MIMO) radars, an RD-
map is obtained per virtual antenna. Hence, a data cube, in-
stead of a matrix, is available. Here, beamforming is performed
by applying a third FT along the third dimension to get the
azimuth information.

B. GM-PHD filter

In GM-PHD, each state is expressed as a Gaussian compo-
nent with a specific tag used for identification. The Gaussian
component with a unique tag tj at instant k is represented by
ν
(tj)
k (x) ≜ w

(tj)
k N
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k , P
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)
where m

(tj)
k and P

(tj)
k

denote the mean and the covariance matrix of the Gaussian
component, respectively, and w

(tj)
k is its weight. The reader

can find the detailed original recursion equations in [6]. A
summary of the slightly modified GM-PHD filter implemented
in the current work follows.

Let’s assume the linear process equation and a general
observation model for each Gaussian component:

fk|k−1(x|xk−1) = N (x;Fxk−1, Q) ,

gk(z|xk) = N (z;h (xk) , R) ,
(2)

where F is the process matrix of the constant velocity model
with process noise covariance Q, and h(.) is a generic
measurement model with R being its corresponding noise
covariance matrix. Then, the GM-PHD recursion involves the
iteration of the following steps [6].

1) Prediction: Given the states in the last instant, the
predicted PHD function is given by:

νk|k−1(x) =

Jk−1∑
j=1

psν
(tj)
k (x) + νβ,k|k−1 + νγ,k(x) , (3)

where ps is the survival probability (a design parameter), Jk−1

denotes the number of the states (i.e., Gaussian components)

in the last instant, and νβ,k|k−1 and νγ,k are respectively the
spawned and instantaneous birth PHDs given respectively by:

νβ,k|k−1 =

j=Jk−1∑
j=1

Jβ,j∑
i=1

wsw
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k−1N (x;Fm
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(4)

and νγ,k(x) =
∑Jγ,k

j=1 ν
(tj)
γ,k (x). In these equations, Jβ,j is a

Poisson random variable (r.v.) with a specified rate and denotes
the number of spawned states from state tj , and ws, di, and
Qβ are given design parameters. Similarly, Jγ,k is a Poisson
r.v. denoting the number of born states at instant k. ν(tj)γ,k (x)
denotes the PHD of the jth born state with a random mean
and a large covariance (e.g., we used P

(tj)
γ,k = 40P0 where

P0 is the initial covariance.). The spawned states are assigned
unique tags.

2) Measurements modification and gating: The measure-
ments are detected with probability pd (a design parameter).
The measurements are modified as elaborated in Sec. III-A.
Then, the modified measurements whose normalized inno-
vation squared do not fall within the gates of the predicted
measurements are removed.

3) Update: The detected and modified measurements con-
tribute to updating the set of states as follows:

νk(x) = (1− pd) νk|k−1(x) +

JZk∑
i=1

Jk|k−1∑
j=1

ν
(tj)

k|k (xk|k−1, zi) ,

(5)
where Zk is the set of the detected measurements with cardi-
nality J(Zk). The mean and the covariance of each component
ν
(tj)

k|k are calculated using the extended Kalman filter (EKF)
recursion. The weight is updated by:

w
(tj)

k|k =
pdw

(tj)

k|k−1q
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k (z)
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, (6)

in which q
(tj)
k (z) is the association probability of measurement

z to the predicted measurement of state tj :

q
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)
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)
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wherein Hk is the Jacobian matrix and P
(tj)

k|k−1 denotes the
predicted estimation error covariance matrix of state tj . At the
end of this step, the tags are not unique anymore. This will
be corrected after pruning and merging. Also, κk(z) denotes
the clutter intensity, which is key in determining the weights’
values. The clutter modeling is discussed in Sec. III-B.

4) Pruning and merging: To avoid the exponentially grow-
ing number of the Gaussian components, the components with
weights less than a threshold (a design parameter) are omitted,
and the other weights are modified to maintain the exact
summation as before pruning. Afterward, close components
are merged to create a single component. Merging is carried
out iteratively. At each step, the component with the most
stable tag (i.e., the tag that has existed more during previous
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recent instances) is selected, and the components in its vicinity
are merged. The other merging steps are the same as elaborated
in [7].

5) States selection: Finally, among the Gaussian compo-
nents, those with a weight more than a threshold (say, 0.5)
are selected as the set of the current states. In contrast, others
still contribute to updating the states in later instances.

III. FMCW RADAR MTT PIPELINE

Fig. 1 depicts the MTT pipeline with the radar data cube as
input. First, the static targets are removed by subtracting the
average of all chirps from all those chirps. This is done per
antenna. Then, the 3D Fourier Transform (3D-FT) gives the
range, velocity, and azimuth of the potential existing moving
scatterers, which are detected using an appropriate Constant
False Alarm Rate (CFAR) detector (e.g., the smallest of cell
averaging (SOCA) CFAR [13]). The detected range-Doppler
bins are then clustered using DBSCAN [14]. DBSCAN gives
two outputs: i. the centroids of the clusters ([ck] in Fig. 1) are
fed into MUSIC [13] to fine-tune the azimuth calculation2;
and ii. the bounding boxes of the clusters used in measurement
modification are explained below.

Fig. 1. An overview of the radar MTT pipeline.

Fig. 2. An example of clustering of the target’s point clouds in the RD map.
Clusters (1) and (2) belong to the corresponding targets shown in the camera
image, while (3) indicates clutter, probably due to multi-path.

2This is optional. Instead, the range, Doppler, and azimuth corresponding
to the bins given by DBSCAN can be directly used as inputs by GM-PHD.
However, the angular resolution of the radar is coarse, and a super-resolution
algorithm is needed for fine-tuning.

A. Radar measurements

The detected bins are clustered using DBSCAN (see Fig.
2). It is common to consider the centroid of each cluster as the
representative of the radar measurement. However, this may
not be the optimal representation. Alternatively, we propose
using the closest point of the cluster in terms of its likelihood,
given the predicted measurements.

To choose the best cluster representation, an association
matrix Ak = [ai,j ] is created with ai,j ≜ q

(tj)
k (z⋆ij) where

z⋆ij is the closest point of the cluster of zi to the predicted
measurement of state tj . Each measurement zi is replaced
with the point that gives the highest likelihood in row i of
Ak. Specifically, zi ← arg max q

(tj)
k (z⋆ij).

As an example, Fig. 3 shows four bounding boxes. Since
there are two predicted measurements (ẑ1 and ẑ2), there
are at most two closest points per bounding box (marked
by red X), each corresponding to a predicted measurement.
The association probabilities of these closest measurements
(i.e., red Xs) to the predicted measurements (gray stars) are
calculated, and the one with the highest association probability
is used as the cluster representative (indicated by small green
stars in Fig. 3).

Fig. 3. Modification of the measurements based on their bounding boxes.

This modification increases the likelihood of the measure-
ments (Eq. (7)) and results in more stable weights (Eq. (6)).
Hence, it effectively impacts the PHD filter performance.

B. Clutter modeling

Clutter is the other determining value in Eq. (6). A common
approach is to model the clutter as uniformly distributed
measurements, i.e., κ(z) = λu(z). This model does not fit in
the radar MTT pipeline. Indeed, there are three clutter sources
in a radar’s RD map: i. speckle noise; and ii. multi-path clutter
(e.g., see Fig. 2); and iii. clutter due to wrong clustering. The
first clutter type is effectively suppressed by DBSCAN. The
other two clutter types depend on the states. Accordingly, we
model the clutter intensity as:

κk(z) = λc
1

a

Jk|k−1∑
j=1

w
(tj)

k|k−1 , (8)

where a denotes the area of the radar’s field of view (FoV)3

and λc is the clutter rate given as a Poisson r.v. with a
specified average rate λ̄c (e.g., we used λ̄c = 2 based on our

3If the radar has a 180o FoV, a = π
2
R2

max with Rmax being the maximum
radar unambiguous range.
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observation). Note that the clutter model (8) does not explicitly
depend on the measurement z but it implicitly depends on the
measurements in the previous step through w

(tj)

k|k−1.

C. Robust target identification

The original GM-PHD filter uses the strongest component
(i.e., the component with the largest weight) for merging [7].
However, this is a hard selection since the weights are not too
far from each other and may result in emerging new target
tags. To have a more robust target identification, as discussed
in step 4 of Sec. II-B, we use the most stable tag at each
iteration of merging.

IV. EVALUATION RESULTS

A. Simulated evaluation

We evaluate the implemented modified GM-PHD filter using
a simulated scenario for tracking 8 targets moving in different
velocities and directions as shown in Fig. 4-a where each color
indicates a specific target. The radar in [0, 0] measures range,
azimuth, and Doppler and uses a white noise acceleration
model. The scenario includes two targets (blue and black)
moving toward each other; two targets (green and red) moving
from left to right and crossing each other; two targets (green
and cyan) moving from left to right, joining each other, and
then splitting; two targets (gray and violet) moving from left
to right, the gray first starts moving, then the violet appears
and reaches the gray, then the gray stops while the violet
goes up. All target motions consist of stages of accelerating,
constant velocity and slowing down. The trajectories of the
targets are contaminated by a Gaussian noise to simulate the
uncertainty of the measurements caused by vibrations, non-
rigid targets, clustering, and observation noise. The range and
Doppler variances are both 0.1 while the azimuth variance is
0.01. Furthermore, a Poisson-distributed random number of
clutters per target with an average rate of 2 are added.

The GM-PHD parameters are listed in Table I. Fig. 4-b
depicts the tracking result given by the proposed GM-PHD
algorithm where the color change indicates the change in the
target identification (i.e., its tag). Fig. 4-c and d compare the
performance of the algorithm with JPDAF in terms of the
Hausdorff distance and the number of the detected targets. The
implemented JPDAF uses the same single target parameters
and EKF as GM-PHD. The comparison shows the superiority
of GM-PHD over JPDAF. Note that GM-PHD does not
perform data association and, hence, is computationally lighter
than JPDAF.

TABLE I
THE SETTING OF GM-PHD IN EVALUATION.

Prune Merge Max. no. of
Thresh. Thresh. pd ps λ̄c components

Value 10−5 4 0.99 0.99 2 200

Fig. 4. Evaluation of our PHD-based MTT algorithm in a simulated scenario.
(a) Ground truth. (b) The PHD-based tracking result. (c) and (d) compare the
PHD- and JPDA-based algorithms in terms of the Hausdorff distance and the
error in estimating the number of targets, respectively.

B. Experimental evaluation

We evaluate the performance of the whole radar-based MTT
pipeline (Fig. 1) in the tracking of pedestrians in a semi-
public environment. The setup included a TI IWR6843ISK
of Texas Instruments which is a MIMO FMCW radar with
three transmitters and four receivers. It was installed together
with a commercial webcam (HD Pro of LogiTech) on a tripod
at a height of around 3m from the ground and a tilt of around
13o towards the ground. The radar setting is listed in Table II.
The setting of the GM-PHD filter is also the same as Table I.

TABLE II
THE SETTING OF THE RADAR USED FOR EXPERIMENTAL EVALUATION.

Radar parameter Value
Start frequency (GHz) 60.1221
Bandwidth (GHz) 3.257
Pulse repetition time (µs) 36.66
Coherent processing time (ms) 90
Number of chirps per frame 255
Number of samples per chirp 256
Sampling frequency (MHz) 9.6

Fig. 5 illustrates an image of the area of data recording as
well as an example of the estimated tracks during one minute
in two cases with and without measurement modification using
the bounding boxes. As seen, the clutter removal and target
identification are more robust when the radar measurements
are modified using bounding boxes.

Furthermore, the consistency of the GM-PHD was analyzed
in terms of the total normalized innovation squared (NIS) in
the two cases (with and without measurement modification).
For consistency analysis, the GM-PHD was run 10 times and
the NIS values of the calculated states are averaged. The
consistency analysis results are shown in Fig. 6 in the two
cases together with the 95% confidence limits as well as
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Fig. 5. Evaluation of the PHD-based MTT with real radar data. (a) The scene of radar recording. (b) Tracking routes when bounding-box-based measurements
are used. (c) Tracking routes without bounding boxes. In (a) and (b), color changes indicate different target IDs.

their moving average. As seen, measurement modification also
brings more consistency to multitarget tracking.

Fig. 6. Normalized innovation squared (NIS) in two cases of (a) with
bounding-box-based measurements; and (b) without bounding boxes.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a radar MTT pipeline based on a
modified GM-PHD filter. The pipeline includes the necessary
steps for processing a MIMO-FMCW radar, namely statistical
target removal, 3D-FT, and CFAR detection. Then, DBSCAN
is used to cluster the extended targets given by detection. Then,
the centroids of the clusters are used as the raw measurements
by GM-PHD while their corresponding bounding boxes are
used for fine-tuning the measurements based on the predicted
measurements from the previous instant. Furthermore, we
introduced a more fitting clutter model for processed radar
data to be used in GM-PHD formulations. In the end, we
demonstrated the robustness of the proposed modifications
through experimental tracking of pedestrians using a 60GHz
MIMO radar.

The tracking results highly depend on the quality of its
input data. As a future study, the impact of other kinds
of CFAR detectors, such as GLRT-CFAR, on the tracking
performance can be studied. Furthermore, the GM-PHD filter
can be replaced with its cardinalized version (i.e., GM-CPHD).
Note that both improvements would significantly increase the
MTT complexity.
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