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Abstract—In this work, we address the problem of scalable
approximate inference and covariance estimation for linear in-
verse problems using Expectation-Propagation (EP). Traditional
EP methods rely on Gaussian approximations with either di-
agonal or full covariance structures. Full covariance matrices
can capture correlation but do not scale as the dimensions of
the problem increases, while diagonal matrices scale better but
omit potentially important correlations. For the first time to
the best of our knowledge, we propose to investigate low-rank
decompositions within EP for linear regression. The potential
benefits of such covariance structures are illustrated thorough
simulations results obtained on sparse linear regression problems
and a more challenging spectral unmixing problem where the
sparse mixing coefficients are, in addition, subject to positivity
constraints.

Index Terms—Variational inference, sparse regression,
Expectation-Propagation, low-rank representation, spectral
unmixing.

I. INTRODUCTION

Monte Carlo sampling has been the gold standard for
Bayesian inference when posterior moments cannot be
computed analytically. Significant improvements have been
achieved in terms of scalability of Markov chain Monte
Carlo (MCMC) methods, using Langevin diffusion [1] and
Hamiltonian Monte Carlo methods [2]. Still, sampling high-
dimensional distributions exhibiting multiple modes and strong
correlations remains challenging.

Variational inference (VI) stands as an alternative to MCMC
for high-dimensional inference. It consists of approximating
the distribution of interest by a simpler distribution, whose
moments are easier to compute. Variational Bayes (VB) is the
most classical family of VI methods, due to the simplicity of
its implementation. Another family of methods is referred to as
Expectation-Propagation (EP) [3], which primarily differ from
VB by the similarity measure (divergence) used to compare
the true distribution of interest to its approximation. Early VB
algorithm have relied on mean-field approximations to make
the VB updates tractable, but such assumptions neglect poten-
tially important correlations in the approximating distribution.
More recently, another family of VB methods, referred to as

This research was supported by the Royal Academy of Engineering under
the Research Fellowship scheme RF201617/16/31 and by the Engineering and
Physical Sciences Research Council (EPSRC) Grant number EP/T00097X/1.

fixed-form VB (FFVB) [4], where the practitioner can select
the approximating distribution from a parametric family. An
example of application of FFVB with Gaussian approxima-
tions and structured covariances has been recently discussed
in [5]. This method is referred to as variational approximation
with factor covariance (VAFC).

EP is an alternative to VB and uses a reverse Kullback-
Leibler (KL) divergence. EP and VB can be interpreted within
the more general framework of Power EP [6]. Although EP
is in general more difficult to implement than VB, it suffers
less from underestimation of the distribution variances or
covariances. Hence it is a promising tool for more reliable
uncertainty quantification. For high-dimensional problems, EP
often relies on using multivariate Gaussian distributions as
approximating distributions but full, unstructured covariance
matrices can be hard to manipulate and store for large
problems. Using diagonal matrices, referred to as diagonal
EP, partially overcomes this issue [7], [8] but the resulting
approximation still relies on a mean-field like assumption,
which may not be appropriate.

In this preliminary work, we investigate how to incorporate
and leverage low-rank structures within EP to partially capture
correlation while keeping the EP update simple. Ultimately,
such methods would be useful for large scale inverse problems,
but in this work we concentrate on medium scale sparse linear
inverse problems, for which the exact posterior distribution is
still tractable. In the last set of experiments, we apply the
proposed EP algorithm to a spectral unmixing problem, and
discuss current limitations of the approach.

The rest of the paper is organised as follows: In section II,
we briefly introduce the Bayesian model used for linear re-
gression. Section III describes the EP algorithm with diagonal
plus low-rank constraints. We demonstrate the performance of
the proposed EP algorithm with several simulations in Section
IV. Finally, the conclusions are summarised in section V.

Notation: N (x;µ,Σ) denotes the probability density func-
tion of a (multivariate) Gaussian random variable x with
mean µ and covariance matrix Σ. The KL divergence
KL(P (x)∥Q(x)) =

∫
P (x) log (P (x)/Q(x)) dx is used to

measure the discrepancy between the densities P (x) and
Q(x), and tr(·) and | · | denote the trace and the determinant
of a matrix, respectively.
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II. EXACT BAYESIAN MODEL

We consider a classical linear forward model where the
observed data y ∈ RL result from the noisy transformation of
the signal of interest x ∈ RR by a linear operator represented
by the matrix A ∈ RL×R. More precisely, the observation
noise is additive, zero-mean, Gaussian distributed with known
covariance matrix Σ0, leading to

f(y|x) = N (y;Ax,Σ0). (1)

We address the problem of recovering x under the assumption
that x is sparse. Note that if x was sparse in a specific basis,
the equation above could be reformulated easily to estimate the
sparse representation of the signal of interest. In the spectral
unmixing context, the R columns of A represent spectral
signatures of known materials referred to as endmembers, and
the elements in x are the corresponding material abundances.
The supervised spectral unmixing problem is typically an ill-
posed problem, even if R < L, as the columns of A can
be highly correlated. While enforcing the positivity of the
elements of x regularises the spectral unmixing problem it has
been shown that promoting sparse mixtures [9] can drastically
improve the results. Here, we consider a sparsity-promoting
prior model that factorize over the elements of x, i.e.,

f(x|Θ) =

R∏
r=1

f(xr|θr) (2)

where Θ = {θr}r is the set of hyper-parameters control-
ling the univariate priors f(·|θr). Classical choices include
Laplace distributions, Student’s t distributions, and (non-log-
concave) spike-and-slab priors. Here, we consider a spike-
and-slab prior that consists of a mixture of two zero-mean
Gaussian distributions. To ensure the positivity of x when
needed, truncated Gaussian distributions are considered. Note
that allowing one of the variances to tend to 0, we can
also obtain non-differentiable Bernoulli-Gaussian or Bernoulli-
truncated-Gaussian prior. While ultimately imposing positivity
constraints is necessary for spectral unmixing, relaxing these
constraints makes it easier to compute exact posterior mo-
ments, at least for low-dimensional problems. The posterior
distribution of x is then given by

f(x|y,Θ) ∝ f(y|x)f(x|Θ). (3)

Note that Θ is assumed to be fixed. However, it could be
estimated within the EP framework using by including the EP
algorithm within a variational expectation-maximization as in
[10]. The posterior in Eq. (3) is intractable as soon as it is no
longer Gaussian or a Gaussian mixture and numerical tools
are needed to approximate its (marginal) moments. In the next
section, we summarize the proposed approach based on EP to
approximate the mean of f(x|y,Θ) and its covariance matrix.

III. EXPECTATION PROPAGATION WITH DIAGONAL+LR
CONSTRAINTS

A. 2-factor EP main principles
The basic idea behind EP is to approximate the intractable

posterior distribution f(x|y,Θ) by a tractable distribution

Q(x) that leverages the factorization of f(x|y,Θ). As in
[7], [8], we use two unnormalized multivariate Gaussian
factors q1(x) = N (x;m1,S1) and q0(x) = N (x;m0,S0)
to approximate the likelihood f(y|x) and the prior f(x),
respectively. This leads to Q(x) = N (x;m,S) ∝ q1(x)q0(x)
with

S−1 = S−1
1 + S−1

0 (4)
S−1m = S−1

1 m1 + S−1
0 m0. (5)

Note that to simplify the notation, normalised and unnor-
malised distributions are not distinguished here. With this fac-
torization, EP operates by solving iteratively the two following
KL divergence minimization problems

min
q0

KL (q1(x)f(x|Θ)||Q (x)) , (6a)

min
q1

KL (f (y|x) q0(x)||Q (x)) , (6b)

subject to constraints on q0 and q1.
In practice, since Q(x) is Gaussian, these minimization

problems reduces to matching the means and precision ma-
trices of the first argument of the KL divergences (referred to
as tilted distributions) to those of the second argument, subject
to constraints. In [7], these two problems where simplified by
imposing S0 and S1 to be diagonal, leading to S being a
diagonal approximation of the posterior covariance matrix. As
mentioned in the introduction, we refer to this approach as
diagonal EP (D-EP). While not imposing constraints on S
is possible within EP for small dimensional problems, this
induces a large number of sequential updates (instead of only
two here) and it requires storing and handling large covariance
matrices. Instead of comparing our method to a real full-EP
method (F-EP), we use as comparison and refer to as F-EP∗

the method proposed in [7] that runs D-EP and then keeps the
full covariance of the tilted distribution during the last update
of the approximate likelihood.

To address scalability issues and still capture part of the
posterior dependencies between the elements of x, we propose
to identify low-rank (LR) structures in the posterior covariance
matrix. The true prior considered here is separable so we used
the same property for q0(x), i.e., S0 is forced to be diagonal
(and positive definite (PD)). A posteriori correlation is induced
by the operator A in the likelihood. We thus propose to force
S1 to have an isotropic + LR structure, i.e., S1 = σ2I+BBT ,
where B is an R × K matrix with K ≤ R and K a user-
defined rank, typically chosen to be much smaller than R.
This structural constraint fits well within EP, as S−1

1 can be
expressed as a sum of diagonal and a low-rank matrix [11],
which in turn leads to S having a diagonal + LR structure,
since S0 is diagonal. It also ensures that S1 is PD. Note that
a diagonal+LR structure could also be used for S1, however it
can lead to numerical instabilities and we restricted ourselves
to an isotropic + LR structure here. Although this structural
assumption generalises the variational approximation of the
true posterior compared to D-EP, the new constraints on S1
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complicate the problems in Eq. (6). We now summarize how
the two problems in Eq. (6) are solved.

B. Update of q0(x)

Computing the mean and covariance of the tilted distri-
bution q1(x)f(x|Θ) is either intractable or computationally
expensive for high-dimensional problems. However since S0

is diagonal, its diagonal elements can be updated sequentially
as in traditional, sequential EP. These R updates reduce to
matching the moments of univariate tilted distributions and a
univariate Gaussian. An alternative approach is to use parallel
EP to update all the elements of S0 simultaneously, however
it does not significantly reduce the overall computational
time since R univariate cavity distributions still need to be
computed. Note that a standard damping strategy [7], [12] is
also used to prevent potential oscillations between successive
iterations.

C. Update of q1(x)

The main methodological contribution of this work is the
update of the appproximate likelihood q1(x), which becomes
challenging as R increases. Indeed the precision matrix of the
cavity f (y|x) q0(x) is given by Σ−1 = AΣ−1

0 AT + S−1
0 ,

and its inversion can be prohibitively expensive for general
matrices A. Updating m1 once S1 has been updated is
straightforward and not discussed here due to space constraints
(see [10] for details). We now discuss the update of S1. It can
be shown that this update reduces to solving

min
σ2,B

tr(S−1Σ) + log |S|, (7)

with S−1 = (σ2I + BBT )−1 + S−1
0 . To the best of our

knowledge, the problem above does not have a closed-form
solution but it can be solved by a blockwise coordinate descent
algorithm based on a log-determinant semidefinite program
[11]. However, such an approach becomes expensive as R
increases. First, instead of computing and storing the tilted
covariance Σ, it is approximated by generating Ns random
samples x1, . . . ,xNs

from N(0,Σ) (which does not require
the computation of Σ [13]) and by computing Σ̂, the sample
covariance matrix of the samples. The new problem becomes

min
σ2,B

C = tr(S−1Σ̂) + log |S|, (8)

subject to σ2 > 0 and B ∈ RR×K . This problem is simpler
to solve as it can be shown that C can be interpreted using
the following Bayesian model xi ∼ N (0, D0), (i = 1, . . . , Ns), i.i.d.

zi ∼ N (0, I), (i = 1, . . . , Ns), i.i.d.
ui|xi, zi ∼ N (xi +Bzi, σ

2I), (i = 1, . . . , Ns), i.i.d.

Indeed, it turns out that minimizing the log-marginal posterior

min
σ2,B

L =

Ns∑
i=1

log (f(xi|ui = 0))

=

Ns∑
i=1

log

(∫
f(xi, zi|ui = 0)dzi

)
(9)

is equivalent to minimizing C. Instead of direct minimization
of L, we use an EM-based method with {zi}i as latent
variables. The resulting EM algorithm, not detailed here due to
space constraints, is very similar to that used for probabilistic
PCA [14] due to nature of the model f(ui|xi, zi). The updates
of B and σ2 are performed with a gradient-descent method.

D. Overall EP method

The EP algorithm is initialised as follows: (m0,S0) is set
to match the prior mean and covariance. The algorithm then
starts with the update of q1(x). Damping is applied during the
update of q0(x) but not during the update of q1(x) to preserve
the structure of S1. The algorithm iterates until the (m,S)
converges or a maximum number of iterations is reached.

IV. SIMULATION AND RESULTS

In this section, we primarily assess the performance of the
new algorithm, referred to as LR-EP algorithm, in terms of
posterior mean and covariance estimation. First, we simulate
data according to a Bayesian model whose posterior moments
can be computed analytically, at least in low dimensions. We
then investigate a sparse spectral unmixing problems where
the posterior moments cannot be computed analytically.

A. Sparse Gaussian mixture models

We first explore the performance of our proposed algorithm
with four different types of matrix A:

a) i.i.d. Gaussian matrix, with L = R = 10,
b) a Toeplitz matrix whose first column is [1, . . . , L]T , with

L = R = 10.
c) a quasi rank-1 matrix: A = r ·1R

T +βA0, where β =
10−3, r ∈ RL×1 and A0 ∈ RL×R are i.i.d. standard
Gaussian matrix, with L = R = 10.

d) Downsampled subset of the USGS 1995 spectral library
used in [9] and in our unmixing experiments, with L =
R = 10.

e) Same as d) but with L = 100 and R = 10.
The first two matrices are relatively well-conditioned and
exhibit weak to no correlation structures. Conversely, other
matrices are ill-conditioned and exhibit stronger correlation
structure. As more spectral bands are added in e) compared
to d) we expect stronger correlation to appear in the posterior
distribution. We generated the non-zero elements of x from
a standard normal distribution and set randomly 3 out of
10 elements to 0. We then simulated data with a signal-to-
noise ratio (SNR) level of 30 dB. To build the exact and
approximate Bayesian models, we use a Gaussian mixture
priors, i.e., f(xr|θr = {v0, v1, π}) = πN (x; 0, v0I) + (1 −
π)N (x; 0, v1I), where (v0, v1, π) = (1, 1e−3, 0.73). This
yields a true posterior that is a Gaussian mixture of 2R

components, allowing us to obtain closed-form expressions
for its mean and covariance in the low-dimensional regime.

We compare the estimation accuracy of the posterior means
and covariance matrices using EP with different covariance
structure constraints (i.e., D-EP, LR-EP and F-EP*) and VAFC
[15], as a VB equivalent of our LR-EP method. We set the
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user-defined rank of VAFC is set to K = 1 and use K = 1 and
K = 5 for LR-EP. The maximum number of iterations for all
EP algorithms is 100. The posterior mean (resp. covariance)
accuracy is measured using the relative root mean squared
error (RMSE) (resp. the relative log-euclidean distance). The
results are summarized in Tables I and II. The values provided
are averaged over 10 realizations and the values in brackets
indicate the corresponding standard deviations.

TABLE I
RELATIVE RMSE OF POSTERIOR MEAN FOR DIFFERENT METHODS

D-EP LR-EP LR-EP F-EP* VAFC
(K = 1) (K = 5) (K = 1)

a 0.0098 0.0110 0.0106 0.0098 0.1890
(0.0094) (0.0105) (0.0104) (0.0092) (0.0266)

b 0.0164 0.0079 0.0083 0.0293 0.2997
(0.0289) (0.0035) (0.0045) (0.0604) (0.0367)

c 0.0426 0.0152 0.0152 0.0255 0.4040
(0.0188) (0.0027) (0.0031) (0.0318) (0.1297)

d 0.2560 0.0222 0.0207 0.0798 0.2910
(0.4740) (0.0053) (0.0048) (0.1128) (0.0407)

e 7.0×10−5 2.0×10−5 1.8×10−5 1.0 × 10−5 0.4513
(4.5×10−5) (8.3×10−6) (1.0×10−5) (1.5×10−5) (0.1947)

Remarks. The best (resp. second best) results are bold (resp. underlined),
which also applies to the other tables.

TABLE II
RELATIVE LOG-EUCLIDEAN ERROR OF POSTERIOR COVARIANCE FOR

DIFFERENT METHODS

Types D-EP LR-EP LR-EP F-EP* VAFC
(K = 1) (K = 5) (K = 1)

a 0.3718 0.3357 0.3345 0.3155 0.7989
(0.0291) (0.0308) (0.0325) (0.0308) (0.0292)

b 0.4645 0.4854 0.4782 0.6637 1.3711
(0.0182) (0.0203) (0.0191) (0.0208) (0.0790)

c 0.4185 0.7006 0.7017 8.7330 22.2471
(0.0929) (0.1107) (0.1120) (0.8792) (2.2678)

d 0.5458 0.6874 0.6834 0.9496 2.1849
(0.0348) (0.0695) (0.0812) (0.0545) (0.0791)

e 0.1808 0.1030 0.1031 0.2302 0.4171
(0.0038) (0.0144) (0.0145) (0.0360) (0.0751)

Overall in Tables I and II, VAFC is less accurate than EP
in estimating both the mean and marginal variance, probably
because of the mode-seeking behavior. It should also be noted
that we observed that VAFC can converge slowly and conver-
gence might be difficult to assess. Among the EP algorithms,
LR-EP is the most flexible model. It is expected to give better
results than D-EP or F-EP*. The LR-EP results are at least in
par with those of D-EP, e.g., for case a), and generally better
than D-EP for cases b)-d). For e), all the EP methods estimate
very well the posterior means and LR-EP provides better
covariance estimates. It should be noted that we observed that
the performance of D-EP, F-EP* and, to a lesser extent LR-
EP, depends on the amount of damping applied to stabilize
EP. LR-EP seems overall more stable than D-EP when the
posterior exhibits strong correlation. Fig. 1 shows examples of
covariance matrices estimated via EP. Using K = 1, LR-EP is
able to capture most of the dependencies between covariates,
while D-EP only captures marginal variances.

Fig. 1. Example of true and estimated covariance matrices for the matrix of
case e) (spectral library). All the subplots share the same color scale.

B. Sparse spectral unmixing

We now investigate the harder, sparse unmixing problem
and assess our LR-EP method for this higher-dimensional
problem where x is subject to positivity constraints a priori.
We selected R = 50 signatures from a pruned USGS 1995
library A with L = 224 spectral channels by selecting
signatures that are relatively similar (the minimum and max-
imum spectral angle between columns of A are 4.44◦ and
52.79◦ respectively) (see Fig. 2). The abundances of the first
5 endmembers are generated independently according to a
truncated Gaussian distribution with hidden mean and variance
equal to 0 and 1, respectively. The remaining 45 abundances
are set to 0, resulting in sparse mixtures. In these experiments
we use mixtures of truncated Gaussian priors, i.e., f(xr|θr =
{v0, v1, π}) = πN+(x; 0, v0I) + (1 − π)N+(x; 0, v1I) and
set (v0, v1, π) = (1, 1e−3, 0.12).

In addition to the competing methods already introduced, we
also use two classical pixel-wise linear unmixing methods: the
non-negative least squares (NNLS) algorithm [16], based on
constrained maximum likelihood estimation, and SUnSAL [9],
which relies on MAP estimation using an exponential abun-
dance prior (resulting in an ℓ1-norm based penalty). The regu-
larization parameter of SUnSAL was tuned by cross-validation
to minimize the average abundance estimation errors. VAFC
is not considered as it was not providing satisfactory results
in the previous experiments.

Due to the additional positivity constraints, it is no longer
possible to compute exact posterior moments so we use the
relative RMSE between the actual and estimated abundance
vectors as main metric (see Table III). It should be noted
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Fig. 2. The strong correlations between the endmembers in A pose a
challenge for abundance estimation. The bottom plot depicts, the five active
endmembers of the pruned USGS 1995 library.

that adding the positivity constraints here makes the poste-
riors highly non-Gaussian, which can cause stability issues
during the EP updates. This is particularly visible as the
SNR increases, and the EP standard deviations in Table III
increase. For the lowest SNR, LR-EP provides slightly better
results than SUnSAL and D-EP, which illustrates the potential
benefits of EP and variational inference for problems with
large uncertainties. Additional work will however be required
to investigate the performance degradation for high SNRs. It
is reasonable to assume that as the SNR increases, the non-
Gaussian modes of the posterior distribution become more
separated and this makes local convergence of EP more
likely, irrespective of the structural constraints applied to the
approximating factors. It would be interesting to assess if
damping the likelihood update or improving the prior update
e.g., using stochastic EP [15] could improve the LR-EP results.
Another interesting idea would be to use annealing for the
likelihood factor.

TABLE III
RELATIVE RMSE OF POSTERIOR MEAN WITH DIFFERENT SNR LEVELS

WITH THE EXTENDED SPECTRAL LIBRARY

SNR 10dB 30dB
NNLS 0.1774 (0.0745) 0.0706 (0.0334)
SUnSAL 0.1534 (0.0427) 0.0573 (0.0287)
D-EP 0.1426 (0.0077) 0.2461 (0.2422)
LR-EP (K=5) 0.1326 (0.0168) 0.1132 (0.0776)
LR-EP (K=10) 0.1354 (0.0179) 0.2601 (0.2384)
F-EP* 0.1405 (0.0120) 0.2672 (0.4009)

V. CONCLUSIONS

In this paper, we investigated the use of low-rank structures
with the Expectation-Propagation framework for linear inverse

problems. Using such structures, we showed that in contrast
to most scalable methods relying on (local) mean-field ap-
proximations, EP can capture partially correlations. Moreover,
in the examples where FFVB could be applied (i.e., Section
IV-A), EP performed better. Still, EP does not benefit from
general convergence guarantees and can either 1) provide poor
estimates or 2) suffer from stability issues if the structure of
the approximating factors is not chosen carefully. Those issues
seem to be more frequent when the target distributions become
highly non-Gaussian and when using Gaussian approximations
becomes inappropriate. Future work include the investigation
of more robust EP-like inference schemes, such as stochastic
or average EP, and the consideration of more flexible covari-
ance constraints for multidimensional problems.
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