Marginal MAP estimation of a Bernoulli-Gaussian signal: continuous relaxation approach

Pierre Barbault*, Matthieu Kowalski**, Charles Soussen*

*L2S, Université Paris-Saclay, CNRS, CentraleSupélec

**Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numériques

Gif-sur-Yvette, France

pierre.barbault@centralesupelec.fr, matthieu.kowalski@universite-paris-saclay.fr, charles.soussen@centralesupelec.fr

Abstract—We focus on recovering the support of sparse signals for sparse inverse problems. Using a Bernoulli-Gaussian prior to model sparsity, we propose to estimate the support of the sparse signal using the so-called Marginal Maximum a Posteriori estimate after marginalizing out the values of the nonzero coefficients. To this end, we propose an Expectation-Maximization procedure in which the discrete optimization problem in the M-step is relaxed into a continuous problem. Empirical assessment with simulated Bernoulli-Gaussian data using magnetoencephalographic lead field matrix shows that this approach outperforms the usual ℓ_0 Joint Maximum a Posteriori estimation in Type-I and Type-II error for support recovery, as well as in SNR for signal estimation

Index Terms—Sparse coding, inverse problem, Bernoulli-Gaussian model, Marginal-MAP, Joint-MAP.

I. INTRODUCTION

Let us consider a linear inverse problem described by an operator $\mathbf{H} \in \mathbb{R}^{M \times N}$ that generates a set of observations

$$\mathbf{v} = \mathbf{H}\mathbf{x} + \mathbf{n} \tag{1}$$

with $\mathbf{x} \in \mathbb{R}^N$ and $\mathbf{y} \in \mathbb{R}^M$. We focus on the sparse signal setting, where vector \mathbf{x} contains a few nonzero entries. This approach is now part of the state-of-the-art for inverse problems where many convex and non-convex optimization methods are available, see *e.g.*, [1], [2]. In this paper, we make use of the Bernoulli-Gaussian (BG) statistical prior to model sparse signals \mathbf{x} , with known parameters $p \in (0,1)$ and $\sigma_x^2 > 0$ coding for the rate and variance of the nonzero entries. For all n, the entries x[n] are independent, identically distributed (i.i.d.), with

$$p(x[n]) = \frac{p}{\sqrt{2\pi\sigma_x^2}} \exp\left(-\frac{x[n]^2}{2\sigma_x^2}\right) + (1-p)\delta(x[n])$$

where δ stands for the Dirac distribution centered on zero. The noise **n** is assumed white and Gaussian: $\mathbf{n} \sim \mathcal{N}(\mathbf{0}, \sigma_0^2 \mathbf{I})$.

Maximum *a posteriori* (MAP) estimation of x using the BG prior combined with the white Gaussian noise leads to the usual minimization of the $\ell_2 + \ell_0$ cost function when it comes to minimizing the negative log posterior likelihood [3]:

$$\mathbf{x}^{\text{MAP}} = \underset{\mathbf{x}}{\operatorname{argmin}} \frac{1}{2\sigma_0^2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_2^2 + \frac{1}{2\sigma_x^2} \|\mathbf{x}\|_2^2 + \rho \|\mathbf{x}\|_0 \quad (2)$$

This work was supported by the French National Agency for Research through the BMWs project (ANR-20-CE45-0018).

with $\rho = \log\left(\frac{1-p}{p}\right)$, $\|\mathbf{x}\|_2^2 = \sum_{n=1}^N |x[n]|^2$ and $\|\mathbf{x}\|_0 = \#\{n, x[n] \neq 0\}$. The latter optimization problem being highly non-convex, classical solvers yield sub-optimal solutions, including proximal descent algorithms [4] akin to iterative hard thresholding [5] and greedy algorithms [3].

A convenient reformulation of the BG prior is to write x as the product of two independent random variables:

$$\forall n, x[n] = q[n]r[n] \tag{3}$$

where q[n] is a binary variable equal to 0 when x[n] = 0 and 1 otherwise, distributed according to the Bernoulli distribution: $q[n] \sim \mathcal{B}(p)$ and r[n] equals the signal amplitudes: $r[n] \sim \mathcal{N}(0, \sigma_x^2)$. Using matrix notations, one has

$$\mathbf{x} = \mathbf{Q}\mathbf{r}$$
 where $\mathbf{Q} = \mathrm{Diag}(\mathbf{q})$. (4)

In the literature, the MAP estimation of $\mathbf{x} = \{\mathbf{q}, \mathbf{r}\}$ can be formulated by either maximizing the joint posterior likelihood of (\mathbf{q}, \mathbf{r}) or the marginal posterior likelihood of \mathbf{q} . This leads to two distinct estimators: the joint and marginal MAP, respectively (JMAP and MMAP), see [6].

The JMAP expression can be straightforwardly derived by writing $p(\mathbf{q}, \mathbf{r} | \mathbf{y})$:

$$\left(\hat{\mathbf{q}}^{\text{JMAP}}, \hat{\mathbf{r}}^{\text{JMAP}}\right) = \underset{\mathbf{q}, \mathbf{r}}{\operatorname{argmin}} \frac{1}{2\sigma_0^2} \|\mathbf{y} - \mathbf{H}\mathbf{Q}\mathbf{r}\|^2 + \frac{1}{2\sigma_x^2} \|\mathbf{r}\|^2 + \rho \|\mathbf{q}\|_0$$
(5)

One can notice that for fixed \mathbf{q} , the latter criterion is quadratic with respect to \mathbf{r} . Thus, the minimizer of (5) with respect to \mathbf{r} has a closed-form expression $\mathbf{r}(\mathbf{q})$. Plugging this expression into the cost function (5), the JMAP problem can be reformulated (up to technical rearrangements) as:

$$\hat{\mathbf{q}}^{\text{JMAP}} = \underset{\mathbf{q} \in \{0,1\}^N}{\operatorname{argmin}} \mathbf{y}^{(t)} \mathbf{\Gamma}_y^{-1}(\mathbf{q}) \mathbf{y} + \rho \|\mathbf{q}\|_0$$
 (6)

where

$$\Gamma_y(\mathbf{q}) = \sigma_0^2 \mathbf{I} + \sigma_x^2 \mathbf{H} \mathbf{Q} \mathbf{Q}^{(t)} \mathbf{H}^{(t)}. \tag{7}$$

Once the support $\mathbf{q}^{\mathrm{JMAP}}$ has been estimated, the nonzero amplitudes can be deduced by solving a least-squares problem (i.e., by minimizing the Mean Squared Error (MSE) $\mathbb{E}_{\mathbf{x}|\mathbf{y},\mathbf{q}}[\|\mathbf{x}-\hat{\mathbf{x}}\|^2]$), which reads:

$$\mathbf{x}(\mathbf{q}) = \operatorname*{argmax}_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}, \mathbf{q}) = \sigma_x^2 \mathbf{Q} \mathbf{H}^{(t)} \mathbf{\Gamma}_y^{-1}(\mathbf{q}) \mathbf{y}.$$
(8)

ISBN: 978-9-4645-9360-0 1833 EUSIPCO 2023

MMAP estimation consists of minimizing the marginal posterior likelihood $p(\mathbf{q} \mid \mathbf{y})$ after marginalizing out the signal coefficients \mathbf{r} [7]. It is a natural estimator for applications where the support may bear more interest than the amplitudes, *e.g.*, for source localization of brain activity using Magneto/ElectroEncephalography (M/EEG) [8], [9], [10]. For such problems, it seems more appropriate to first estimate the support using the MMAP estimator, which is the Bayes estimator for the 0-1 loss with discrete random variables, and then retrieve the coefficients \mathbf{r} . It is noticeable that the JMAP and MMAP optimization problems are highly non-convex.

Contributions and outline of the paper. We propose an Expectation-Maximization (EM) approach dedicated to Marginal-MAP estimation. The algorithm is derived in Section II. In Section III, the resulting binary optimization problem is relaxed into a continuous problem over $[0,1]^N$. We first derive the appropriate algorithm to reach a local minimizer over $[0,1]^n$. The latter is then used as warm start initialization of the binary EM algorithm. Finally, the numerical experiments in Section IV demonstrate the validity of our approach.

II. MARGINAL-MAP ESTIMATION OF THE SUPPORT

Marginal-MAP estimation relies on the maximization of $p(\mathbf{q}|\mathbf{y}) = \int p(\mathbf{q}, \mathbf{r}|\mathbf{y}) d\mathbf{r}$ over $\{0, 1\}^N$. According to [6], the Marginal-MAP estimate can be found by minimizing

$$-\log p(\mathbf{q}|\mathbf{y}) = \frac{1}{2}\mathbf{y}^{(t)}\mathbf{\Gamma}_y^{-1}(\mathbf{q})\mathbf{y} + \frac{1}{2}\log|\mathbf{\Gamma}_y(\mathbf{q})| + \rho||\mathbf{q}||_0 + \kappa$$
(9)

where the constant κ does not depend on \mathbf{q} . However, this minimization problem is NP-Hard. We propose a sub-optimal approach based on the Expectation-Maximization (EM) algorithm. Following [11], the observation model (1) is rewritten as

$$y = Hz + e$$
 and $z = Qr + b$ (10)

where

$$\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Gamma}_{\mathbf{e}})$$
 and $\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \sigma_b^2 \mathbf{I})$ (11)

are independent Gaussian vectors, such that

$$\mathbf{\Gamma_e} + \sigma_b^2 \mathbf{H} \mathbf{H}^{(t)} = \sigma_0^2 \mathbf{I} . \tag{12}$$

Notice that one necessarily has $\sigma_b^2 \leq \frac{\sigma_0^2}{\|\mathbf{H}\mathbf{H}^{(t)}\|}$ (where $\|.\|$ refers to the spectral norm of a matrix) to ensure a non-degenerate normal distribution for e. This model has been proposed in [11] to derive the Iterative Shrinkage/Thresholding Algorithm for the LASSO [1]/Basis Pursuit Denoising [2] problem, and re-used in [12], [13] to estimate the parameters (ρ, σ_x^2) of a Bernoulli-Gaussian model.

Note that for a given z, the recovery of q from z = Qr + b boils down to a simple denoising problem. For the latter, the MMAP estimator of q yields a closed-form component-wise expression for each binary variable q[n] [14], [12], [13]:

Proposition II.1. Let $\mathbf{z} = \mathbf{Qr} + \mathbf{b}$ as in Eq. (10) with the corresponding prior. The MMAP estimator of $\mathbf{q}|\mathbf{z}$ can be written component-wise. For all n,

$$q[n] = 1$$
 iff $P(q[n] = 1|z[n]) \ge P(q[n] = 0|z[n])$

i.e. iff
$$z[n]^2 \ge 2\sigma_b^2 \frac{\sigma_x^2 + \sigma_b^2}{\sigma_x^2} \left(\rho + \frac{1}{2} \log \left(\frac{\sigma_b^2 + \sigma_x^2}{\sigma_b^2} \right) \right)$$

Let us derive an EM algorithm for MMAP estimation by considering z as a hidden variable. The EM approach then reads:

$$\mathbf{q}^{(t+1)} = \underset{\mathbf{q} \in \{0,1\}^N}{\operatorname{argmin}} \mathcal{Q}(\mathbf{q}, \mathbf{q}^{(t)})$$

$$\mathcal{Q}(\mathbf{q}, \mathbf{q}^{(t)}) = \mathbb{E}_{\mathbf{z}|\mathbf{y}, \mathbf{q}^{(t)}}[-\log p(\mathbf{z}, \mathbf{q}|\mathbf{y})] .$$
(13)

The E-step and M-step are derived hereafter.

A. E-step

For conciseness, we will use the following writing:

$$f(\mathbf{q}) + \kappa \stackrel{\kappa}{=} f(\mathbf{q}).$$

to refer to an equality up to any constant κ (which does not depend on \mathbf{q}). Using the linearity of the expectation and the fact that $p(\mathbf{q}|\mathbf{z}, \mathbf{y}) = p(\mathbf{q}|\mathbf{z})$, we have that

$$Q(\mathbf{q}, \mathbf{q}^{(t)}) \stackrel{\kappa}{=} \mathbb{E}_{\mathbf{z}|\mathbf{v}, \mathbf{q}^{(t)}}[-\log p(\mathbf{q}|\mathbf{z})]$$
 (14)

where $\kappa = \mathbb{E}_{\mathbf{z}|\mathbf{y},\mathbf{q}^{(t)}}[-\log p(\mathbf{z}|\mathbf{y})].$ Then, Bayes' rule yields:

$$Q(\mathbf{q}, \mathbf{q}^{(t)}) \stackrel{\kappa}{=} \mathbb{E}_{\mathbf{z}|\mathbf{y}, \mathbf{q}^{(t)}} [-\log p(\mathbf{z}|\mathbf{q})] + \rho \|\mathbf{q}\|_{0}$$
 (15)

with now $\kappa = \mathbb{E}_{\mathbf{z}|\mathbf{y},\mathbf{q}^{(t)}}[\log p(\mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})]$. Using Eqs. (10) to (12), we directly have

$$\mathbf{z}|\mathbf{q} \sim \mathcal{N}(0, \mathbf{\Gamma}_z(\mathbf{q}))$$
 with $\mathbf{\Gamma}_z(\mathbf{q}) = \sigma_b^2 \mathbf{I} + \sigma_x^2 \mathbf{Q}^{(t)} \mathbf{Q}$. (16)

Applying Bayes' rule, the posterior distribution of z reads

$$\mathbf{z}|\mathbf{y}, \mathbf{q} \sim \mathcal{N}\left(\hat{\mathbf{z}}, \mathbf{\Sigma}\right)$$
 (17)

with

$$\hat{\mathbf{z}} = \mathbf{\Gamma}_z(\mathbf{q}) \mathbf{H}^{(t)} \mathbf{\Gamma}_y^{-1}(\mathbf{q}) \mathbf{y}
\mathbf{\Sigma} = \mathbf{\Gamma}_z(\mathbf{q}) - \mathbf{\Gamma}_z(\mathbf{q}) \mathbf{H}^{(t)} \mathbf{\Gamma}_y^{-1}(\mathbf{q}) \mathbf{H} \mathbf{\Gamma}_z(\mathbf{q}).$$
(18)

So, we get

$$\mathbb{E}_{\mathbf{z}|\mathbf{y},\mathbf{q}^{(t)}}[-\log p(\mathbf{z}|\mathbf{q})] \stackrel{\kappa}{=} \frac{1}{2} \mathbb{E}_{\mathbf{z}|\mathbf{y},\mathbf{q}^{(t)}} \Big[\mathbf{z}^{(t)} \mathbf{\Gamma}_{z}^{-1}(\mathbf{q}) \mathbf{z} \Big] + \frac{1}{2} \log |\mathbf{\Gamma}_{z}(\mathbf{q})|$$

$$\stackrel{\kappa}{=} \frac{1}{2} (\hat{\mathbf{z}}^{(t)})^{(t)} \mathbf{\Gamma}_{z}^{-1}(\mathbf{q}) (\hat{\mathbf{z}}^{(t)}) + \frac{1}{2} \operatorname{Trace}[\mathbf{\Gamma}_{z}^{-1}(\mathbf{q}) \Sigma^{(t)}] + \frac{1}{2} \log |\mathbf{\Gamma}_{z}(\mathbf{q})|.$$

Finally, the E-step reads

$$Q(\mathbf{q}, \mathbf{q}^{(t)}) \stackrel{\kappa}{=} \frac{1}{2} (\hat{\mathbf{z}}^{(t)})^{(t)} \mathbf{\Gamma}_{z}^{-1}(\mathbf{q}) (\hat{\mathbf{z}}^{(t)}) + \frac{1}{2} \operatorname{Trace}[\mathbf{\Gamma}_{z}^{-1}(\mathbf{q}) \boldsymbol{\Sigma}^{(t)}]$$

$$+ \frac{1}{2} \log |\mathbf{\Gamma}_{z}(\mathbf{q})| + \rho ||\mathbf{q}||_{0}$$

$$\stackrel{\kappa}{=} \frac{1}{2} \sum_{n=1}^{N} Q_{n}(q[n])$$
(19)

with

$$\mathcal{Q}_{n}(q[n]) = \frac{(\hat{z}^{(t)}[n])^{2} + \Sigma^{(t)}[n,n]}{\sigma_{b}^{2} + \sigma_{x}^{2}q[n]^{2}} + \log(\sigma_{b}^{2} + \sigma_{x}^{2}q[n]^{2}) + 2\rho q[n]$$

As expected, $\mathcal{Q}(\mathbf{q}, \mathbf{q}^{(t)})$ is a decoupled sum on q[n]. Thus, the minimization of \mathcal{Q} boils down to the separate minimization of $\mathcal{Q}_n(q[n])$ for all n. This minimization is derived in the M-step described hereafter.

B. M-Step

Given the previous observation on the decoupling of the support variables and using the notation $\Gamma_n^{(t)} = (\hat{z}^{(t)}[n])^2 + \Sigma^{(t)}[n,n]$, the M-step simplifies to

$$q^{(t+1)}[n] = \underset{q \in \{0,1\}}{\operatorname{argmin}} \frac{\Gamma_n^{(t)}}{\sigma_b^2 + \sigma_x^2 q^2} + \log(\sigma_b^2 + \sigma_x^2 q^2) + 2\rho q \quad (20)$$

It appears that $\hat{q}^{(t+1)}[n] = 1$ corresponds to the case where

$$\Gamma_n^{(t)} \ge \sigma_b^2 \frac{\sigma_x^2 + \sigma_b^2}{\sigma_x^2} \left(\log \left(\frac{\sigma_b^2 + \sigma_x^2}{\sigma_b^2} \right) + 2\rho \right). \tag{21}$$

This operation is similar to the thresholding formula in the Marginal-MAP denoising problem with $\Gamma_n^{(t)}$ instead of z[n] in Prop. II.1.

C. Summary of the algorithm

The whole EM procedure is summarized in Alg. 1. One can notice that when $\mathbf{H} = \mathbf{I}$, e can be set to 0 in (10), thus $\sigma_b^2 = \sigma_0^2$, and the covariance matrices Γ_z and Γ_y are equal. Then, Alg. 1 retrieves the MMAP estimator in the denoising case (that is, for $\mathbf{z} = \mathbf{y}$ in Prop. II.1).

The EM algorithm is known as a local ascent method, converging towards a local maximizer of the MMAP criterion. Since the MMAP criterion is highly non-convex (due to the presence of the ℓ_0 cost operator), the algorithm may reach a poor local maximizer. In the next section, we propose to relax the MMAP problem in the continuous setting, that is, for $\mathbf{q} \in [0,1]^N$ to reach warm start support, which may be further used as an initial solution for Alg. 1.

Algorithm 1: EM algorithm for MMAP estimation of support q

III. OPTIMIZATION BY CONTINUOUS RELAXATION

Hereafter, the binary optimization problem defined in (13) is relaxed into a continuous optimization problem, in which the objective function is unchanged and the domain $\{0,1\}^N$ is replaced by $[0,1]^N$. According to Section II, the cost function $\mathbf{Q}(\mathbf{q},\mathbf{q}^{(t)})$ reads as the decoupled sum (19). So, the M-step still consists of solving 1D problems akin to (20).

First, let us point out that when $q[n] \in \{0,1\}$, we have $q[n]^2 = q[n]$. Then, minimizing $\mathcal{Q}_n(q[n])$ over $\{0,1\}$ is equivalent to minimizing:

$$\frac{\Gamma_n^{(t)}}{\sigma_b^2 + \sigma_x^2 q[n]^2} + \log(\sigma_b^2 + \sigma_x^2 q[n]^2) + 2\rho q[n]^2.$$

Now, consider the continuous relaxation of q[n] over [0, 1]:

$$q_n^{(t+1)} = \underset{q \in [0,1]}{\operatorname{argmin}} \frac{\Gamma_n^{(t)}}{\sigma_b^2 + \sigma_x^2 q^2} + \log(\sigma_b^2 + \sigma_x^2 q^2) + 2\rho q^2. \tag{22}$$

This is a 1D problem with bound constraints. The related unconstrained minimizer can be found by calculating the roots of the first-order derivative w.r.t $u = q^2$, written

$$\frac{-\sigma_x^2 \Gamma_n^{(t)}}{(\sigma_b^2 + \sigma_x^2 u^2)^2} + \frac{\sigma_x^2}{\sigma_b^2 + \sigma_x^2 u} + 2\rho = 0.$$
 (23)

When $\rho > 0$, there is a single positive root:

$$u[n] = \frac{1}{4\rho} \left(\sqrt{1 + 8\rho \frac{\Gamma_n^{(t)}}{\sigma_x^2}} - 1 \right) - \frac{\sigma_b^2}{\sigma_x^2}.$$
 (24)

Moreover, a careful study of the cost function within (22) (seen as a function of $u = q^2$) reveals that its second-order derivative is non-negative for the positive root u. Taking into account the bound constraints $q \in [0, 1]$, we get:

$$q^{(t+1)}[n] = \begin{cases} 0 & \text{if } u[n] \le 0\\ 1 & \text{if } u[n] \ge 1\\ \sqrt{u[n]} & \text{otherwise.} \end{cases}$$
 (25)

Algorithm 2: EM algorithm for continuous relaxed q

```
 \begin{aligned} & \textbf{Result: } \mathbf{q} \in [0,1]^{N} \\ & \textbf{Input: } t = 0, \ \mathbf{q}^{(t)} \in [0,1]^{N} \\ & \textbf{while } not \ converged \ \textbf{do} \\ & \begin{vmatrix} \mathbf{Q}^{(t)} = \mathrm{Diag}(\mathbf{q}); \\ \boldsymbol{\Gamma}_{z}^{(t)} = \sigma_{b}^{2}\mathbf{I} + \sigma_{x}^{2}\mathbf{Q}^{(t)}\mathbf{Q}^{(t)^{(t)}}; \\ \boldsymbol{\Gamma}_{y}^{(t)} = \sigma_{0}^{2}\mathbf{I} + \sigma_{x}^{2}\mathbf{H}\mathbf{Q}^{(t)}\mathbf{Q}^{(t)^{(t)}}\mathbf{H}^{(t)}; \\ \boldsymbol{\Sigma}^{(t)} = \boldsymbol{\Gamma}_{z}^{(t)} - \boldsymbol{\Gamma}_{z}^{(t)}\mathbf{H}^{(t)}\boldsymbol{\Gamma}_{y}^{-1}(\mathbf{q})\mathbf{H}\boldsymbol{\Gamma}_{z}^{(t)}; \\ & \textbf{for } n = 1 \ to \ N \ \textbf{do} \\ & \begin{vmatrix} u[n] = \frac{1}{4\rho} \left( \sqrt{1 + 8\rho\frac{\boldsymbol{\Gamma}_{n}^{(t)}}{\sigma_{x}^{2}}} - 1 \right) - \frac{\sigma_{b}^{2}}{\sigma_{x}^{2}}; \\ q[n] = \max\{\min\{\sqrt{u[n]}, 1\}, 0\}; \\ \textbf{end} \\ & t = t + 1; \end{aligned}
```

The resulting algorithm is given in Alg. 2.

One can remark that Alg. 2 is very similar to the EM Sparse Bayesian Learning given in [15], except for the estimation of ${\bf q}$ in the last step. Indeed, one has ${\bf x}|{\bf q}\sim \mathcal{N}(0,\sigma_x^2{\bf Q})$. Then, when ${\bf q}$ is continuous valued, we recover the prior used in SBL. The proposed continuous relaxation can be seen as an SBL approach where the variances are constrained in $[0,\sigma_x^2]^N$, with a particular prior leading to the thresholding step. Moreover, when $\rho=0$, that is $p=\frac{1}{2}$ in the BG model, the updates (22) of q[n] are given by

$$q[n]^2 = \min \left\{ 1, \left(\frac{\Gamma_n^{(t)} - \sigma_b^2}{\sigma_x^2} \right)^+ \right\} . \tag{26}$$

with $(x)^+ = \max(x, 0)$. Then, when $\sigma_x^2 = 1$ and $\sigma_b^2 = 0$, Alg. 2 exactly reduces to the EM SBL proposed by [15].

In Alg. 2, ρ can be seen as a hyperparameter. We propose to run Alg. 2 with various values of this hyperparameter and use the result as an initialization for the binary EM Marginal-MAP (Alg. 1) with the actual value of the model. The resulting procedure is summarized in Alg. 3.

Algorithm 3: Practical algorithm for Marginal-MAP estimation

```
 \begin{split} \textbf{Result:} & \ \mathbf{q} \in \{0,1\}^N \\ \textbf{Input:} & \ k=0, \ \tilde{\mathbf{q}}^{(k)} \in [0,1]^N, \ \Lambda = (\lambda^0 > \ldots > \lambda^K) \\ \textbf{for} & \ k=0 \ to \ K \ \textbf{do} \\ & \ & \ \text{Estimate} \ \tilde{\mathbf{q}}^{(k+1)} \in [0,1]^N \ \text{ by Alg. 2 initialized by } \\ & \ \tilde{\mathbf{q}}^{(k)} \ \text{ for } \rho = \lambda^k; \\ & \ \text{Estimate} \ \mathbf{q}^{(k+1)} \in \{0,1\}^N \ \text{ by Alg. 1 initialized by } \\ & \ \tilde{\mathbf{q}}^{(k+1)} \ \text{ for } \rho = \log\left(\frac{1-p}{p}\right); \\ & \ \textbf{end} \end{split}
```

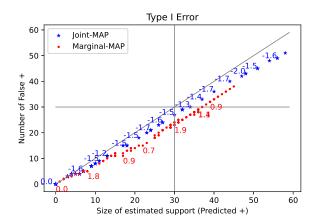
IV. NUMERICAL EXPERIMENTS

In this section, we assess the performance of the proposed algorithm using statistical results on simulated data.

The simulated signals ${\bf q}$ and ${\bf r}$ are generated with Bernoulli and Gaussian distributions of parameters p=0.05,0.01 and $\sigma_x^2=1$. Then ${\bf x}$ is obtained according to ${\bf x}={\bf Qr}$. The observations are degraded by a Gaussian noise of variance $\sigma_0^2=0.01$. The operator ${\bf H}$ used here is a sub-matrix drawn from a M/EEG leadfield of size 272×600 . This kind of operator contains strongly correlated columns and thus is representative of common M/EEG inverse problems. We compare the Marginal-MAP estimation of ${\bf q}$ given by (3), and the corresponding signal estimate ${\bf x}({\bf q})$ as in (8), to the usual Joint-MAP estimation of ${\bf q}$ and ${\bf x}$ obtained by minimizing (2). In practice, we used a proximal descent algorithm similar to the popular Iterative Hard Thresholding (IHT) algorithm [5] with warm restart.

We focus on the quality of the support estimation q. The signal being sparse, we compare both approaches using:

- the False Positive rate (Type-I error);
- the False Negative rate (Type-II error);



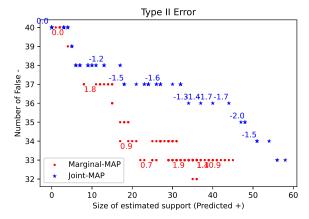


Fig. 1. Marginal-MAP VS Joint-MAP estimation p = 0.05, $\sigma_0^2 = 0.01$. The SNR of the associated estimated signal \mathbf{x} is given for some point (including the best reached SNR)

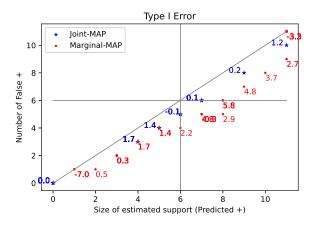
• the SNR of the estimated x(q) using (8).

The Type-I and Type-II errors are displayed versus the predicted positives (which is the size of the estimated support \mathbf{q}), the latter being directly related to the choice of the hyperparameter ρ in Alg. 3 (the larger ρ , the sparser \mathbf{q}).

The results are presented in Figs. 1 and 2. It can be seen that the Marginal-MAP outperforms the Joint-MAP in both type-I and type-II errors and in SNR (especially Type-II error and SNR). Moreover, the algorithm performs well for highly correlated \mathbf{H} . Other experiments (not displayed here) show that for moderately correlated random Gaussian matrices \mathbf{H} , the Joint-MAP and Marginal-MAP approaches give similar performance, the latter being more computational demanding because of the computation of $\Sigma^{(t)}$ in Algs. 1 and 2.

V. DISCUSSION AND CONCLUSION

We have proposed a Marginal-MAP approach for selecting the best possible support, as it is a Bayesian estimator in the sense that the Marginal-MAP minimizes the 0-1 Loss. The selection of the best possible support can be seen as a variable selection problem well studied in statistics [16], also known as the best subset selection problem [17]. The Lasso [1] was initially proposed for variable selection. The problem of



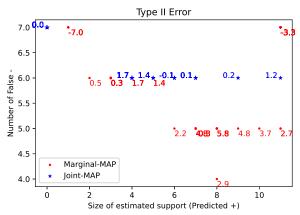


Fig. 2. Marginal-MAP VS Joint-MAP estimation $p=0.01,\,\sigma_0^2=0.01.$ The SNR of the associated estimated signal ${\bf x}$ is given for some point (including the best reached SNR)

variable selection is studied in the context of "prediction"; hence the estimation of x is essential. In [18], an extensive comparison is made between the Lasso and the optimal ℓ_0 solution using a MILP solver as proposed in [19], [20] (as well as few other methods). In the proposed context, the ℓ_0 approach and the Lasso perform very similarly. However, the matrix used in their simulation is not highly correlated as a M/EEG lead field matrix can be. This study opens perspectives on various topics, such as the relations between the Joint-MAP minimizers and the Marginal-MAP ones. Future works will also cover the impact of continuous relaxations. An extensive comparison may be performed between the Marginal-MAP approach, the Joint-MAP, and other approaches for variable selection. In particular, a comparison with MCMC methods for BG prior [21] and the EMVS method proposed in [22]. The latter relies on a mixture of Gaussians, which is very similar to the pdf of the hidden variable z in Eq. (10). From an application perspective, the method could be extended to structured models to apply to actual M/EEG data [23].

REFERENCES

[1] R. Tibshirani, "Regression shrinkage and selection via the lasso," *Journal of the Royal Statistical Society: Series B (Methodological)*, vol. 58, no. 1, pp. 267–288, 1996.

- [2] S. S Chen, D. L Donoho, and M. A Saunders, "Atomic decomposition by basis pursuit," SIAM review, vol. 43, no. 1, pp. 129–159, 2001.
- [3] C. Soussen, J. Idier, D. Brie, and J. Duan, "From Bernoulli-Gaussian deconvolution to sparse signal restoration," *IEEE Transactions on Signal Processing*, vol. 59, no. 10, pp. 4572–4584, 2011.
- [4] H. Li and Z. Lin, "Accelerated proximal gradient methods for nonconvex programming," Advances in Neural Information Processing Systems, vol. 28, 2015.
- [5] T. Blumensath and M. E. Davies, "Iterative hard thresholding for compressed sensing," *Applied and Computational Harmonic Analysis*, vol. 27, no. 3, pp. 265–274, 2009.
- [6] F. Champagnat, Y. Goussard, and J. Idier, "Unsupervised deconvolution of sparse spike trains using stochastic approximation," *IEEE Transac*tions on Signal Processing, vol. 44, no. 12, pp. 2988–2998, Dec. 1996.
- [7] F. Champagnat, Y. Goussard, S. Gautier, and J. Idier, "Deconvolution of spike trains," in *Bayesian Approach to Inverse Problems*, J. Idier, Ed. Apr. 2008, pp. 117–140, ISTE Ltd and John Wiley & Sons Inc.
- [8] H. Stefan, C. Hummel, G. Scheler et al., "Magnetic brain source imaging of focal epileptic activity: a synopsis of 455 cases," Brain, vol. 126, no. 11, pp. 2396–2405, 2003.
- [9] R. Knowlton, R. Elgavish, J. Howell et al., "Magnetic source imaging versus intracranial electroencephalogram in epilepsy surgery: a prospective study," Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, vol. 59, no. 5, pp. 835–842, 2006.
- [10] L. Koessler, C. Benar, L. Maillard *et al.*, "Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG," *Neuroimage*, vol. 51, no. 2, pp. 642–653, 2010.
- [11] M. Figueiredo and R. Nowak, "An EM algorithm for wavelet-based image restoration," *IEEE Transactions on Image Processing*, vol. 12, no. 8, pp. 906–916, 2003.
- [12] M. Kowalski and T. Rodet, "An unsupervised algorithm for hybrid/morphological signal decomposition," in *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2011, pp. 4112–4115.
- [13] P. Barbault, M. Kowalski, and C. Soussen, "Parameter estimation in sparse inverse problems using Bernoulli-Gaussian prior," in *IEEE International Conference on Acoustics, Speech and Signal Processing* (ICASSP), 2022, pp. 5413–5417.
- [14] M. Protter, I. Yavneh, and M. Elad, "Closed-form MMSE estimation for signal denoising under sparse representation modeling over a unitary dictionary," *IEEE Transactions on Signal Processing*, vol. 58, no. 7, pp. 3471–3484, 2010.
- [15] D. P. Wipf and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Transactions on Signal Processing, vol. 52, no. 8, pp. 2153–2164, 2004
- [16] R. B. O'Hara and M. J. Sillanpää, "A review of Bayesian variable selection methods: What, how and which," *Bayesian Analysis*, vol. 4, no. 1, pp. 85–118, 2009.
- [17] R. R Hocking and RN Leslie, "Selection of the best subset in regression analysis," *Technometrics*, vol. 9, no. 4, pp. 531–540, 1967.
- [18] T. Hastie, R. Tibshirani, and R. Tibshirani, "Best subset, forward stepwise or lasso? analysis and recommendations based on extensive comparisons," *Statistical Science*, vol. 35, no. 4, pp. 579–592, 2020.
- [19] D. Bertsimas, King A., and R. Mazumder, "Best subset selection via a modern optimization lens," *The Annals of Statistics*, vol. 44, no. 2, pp. 813–852, 2016.
- [20] S. Bourguignon, J. Ninin, H. Carfantan, and M. Mongeau, "Exact sparse approximation problems via mixed-integer programming: Formulations and computational performance," *IEEE Transactions on Signal Process*ing, vol. 64, no. 6, pp. 1405–1419, 2015.
- [21] D. Ge, J. Idier, and E. Le Carpentier, "Enhanced sampling schemes for mcmc based blind Bernoulli-Gaussian deconvolution," *Signal Processing*, vol. 91, no. 4, pp. 759–772, 2011.
- [22] V. Rovcková and E. I. George, "EMVS: The EM approach to Bayesian variable selection," *Journal of the American Statistical Association*, vol. 109, no. 506, pp. 828–846, 2014.
- [23] M. Lim, J. M. Ales, B. R. Cottereau, T. Hastie, and A. M. Norcia, "Sparse EEG/MEG source estimation via a group lasso," *PloS ONE*, vol. 12, no. 6, pp. e0176835, 2017.