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Abstract—We present a novel approach to approximate Gaus-
sian and mixture-of-Gaussians filtering. Our method relies on
a variational approximation via a gradient-flow representation.
The gradient flow is derived from a Kullback–Leibler discrepancy
minimization on the space of probability distributions equipped
with the Wasserstein metric. We outline the general method and
show its competitiveness in posterior representation and param-
eter estimation on two state-space models for which Gaussian
approximations typically fail: systems with multiplicative noise
and multi-modal state distributions.

Index Terms—Kalman filtering, variational inference, state-
space models, Wasserstein gradient flow.

I. INTRODUCTION

State-space models (or hidden Markov models) are a class
of models widely used to represent latent dynamics that are
partially or indirectly observed. They typically arise in ecologi-
cal, economical, and tracking applications [for an introduction,
see, e.g. 1]. Formally, state-space models are given by a set
of dynamics and noisy observations, often depending on a set
of parameters θ

X0 ∼ p0(· | θ),
Xk+1 ∼ pk(· |Xk, θ),

Yk ∼ hk(· |Xk, θ).

(1)

While the problem of inference in such models is generally
intractable, computing the filtering distribution p(xk | y0:k)
can typically be done exactly if the state-space is finite (xk

can only take a finite number of values) or when all the
(conditional) densities in (1) are Gaussian using the celebrated
Kalman filter [2]. When this is not the case, relying on
approximations becomes necessary. Two important types of
approximations are approximate Gaussian filters [see, e.g. 3],
and Monte Carlo filters [see, e.g. 4].

Although the standard filtering problem is important, one
may also be interested in system identification, which, in the
parametric context, refers to learning θ from a sequence of
observations {y0, . . . , yK}.

In this article, we pay particular attention to two classes of
models, typically neglected in approximate Gaussian filtering.
The first class is that of models with multiplicative noise, for
which stochastic volatility models are an illustrative example,
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often used in economics to model financial returns [5]. These
are usually given as an auto-regressive latent state xk, and
observations yk following

Yk = exp(Xk/2) ηk,

Xk+1 = µ+ α(Xk − µ) + σ ϵk,
(2)

where the noise processes are correlated(
ϵk
ηk

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
. (3)

The second class we consider are systems for which the state
(filtering) posterior is a multi-modal distribution. A simple
example of this form can be given by constructing a latent
state xk with random walk dynamics while the observations
yk are a function of the absolute value of xk:

Xk+1 = Xk + ϵk, ϵk ∼ N(0, 1),

Yk = |Xk|+ ηk, ηk ∼ N(0, 1).
(4)

If, for example, X0 ∼ N(0, δ2), it is straightforward to see
that the state filtering distribution will be bi-modal and fully
symmetric with respect to the x-axis.

A. Contributions
Existing approximate Gaussian filtering methods suffer

from several drawbacks. The linearization methods of [6,
7] for example require computing conditional expectations
mk(x) = E [Yk |Xk = x]. In the case of the stochastic
volatility model (2), this quantity will unequivocally be null (at
least for ρ = 0, see Section III-A for details). Consequently,
applying these methods to (2) will lead to a filtering (or a
smoothing) solution independent of the gathered observations,
which is problematic.

Additionally, classical linearization methods do not extend
directly to multi-modal distributions, and they do not, to the
best of our knowledge, enable handling mixtures of Gaussians.
In view of this, our contributions are the following:

1) We rephrase the filtering problem as an iterative distri-
bution fitting problem.

2) We apply the variational inference method from [8] to
propagate Gaussian approximations between time steps
and formulate it as a fixed point iteration for efficient
gradient calculation.

3) We use our method for parameter estimation in stochas-
tic volatility models and filtering of multi-model target
distributions.
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II. METHODOLOGY

A. Variational Inference via Wasserstein Gradient-flows

Let π(x) ∝ exp(−V (x)) be an arbitrary target distribution
known up to a normalizing constant. Given a variational family
of distributions, qϕ(x), ϕ ∈ Φ, and a measure of discrepancy
L(ϕ) = D(π, qϕ) between π and qϕ, it is natural to try and
approximate π with qϕ by minimizing L.

A typical discrepancy is given by the Kullback–Leibler (KL)
divergence [9]

L(ϕ) = KL(qϕ |π) :=
∫

qϕ(x) log
qϕ(x)

π(x)
dx. (5)

This divergence presents a number of attractive properties
for statistical inference: (i) it is positive, (ii) it only requires
evaluating V (x) and does not necessitate knowing the nor-
malizing constant of π, and (iii), it is exact in the sense that
KL(qϕ |π) = 0 if and only if qϕ = π. For more details, we
refer the reader to [10].

For example, if qϕ(x) = N(x |µ,Σ) is in the family of well-
defined Gaussians, parameterized by their mean and covari-
ance, then the inference problem can be cast as a minimization
of L(·) with respect to (µ,Σ). Furthermore, when ignoring the
positivity constraints on Σ, it is possible to define a gradient
flow on ϕ = (µ,Σ), akin to a gradient descent on L(·) in
continuous time

dϕt

dt
= −∇ϕL(ϕt), (6)

which, under an assumption of convexity, will converge to the
minimizer of the objective L(·) [11].

While this procedure is correct in essence, it targets the
problem indirectly by first assuming an arbitrary parameteri-
zation of the model which may or may not respect convexity.
A more direct approach is to fit qϕ to π in terms of a mini-
mization problem over the space of probability distributions,
where we want to minimize L(q) = D(π, q). In this case,
it is possible to define an analog to the gradient flow (6)
by equipping the space of probability distributions with the
Wasserstein distance [12, Chap. 6]. Under this metric, we can
define a trajectory of probability distributions qt(x) ∈ P(Rd)
via a partial differential equation

∂qt(x)

∂t
= ∇ ·

[
qt(x)∇ log

qt(x)

π(x)

]
, (7)

where ∇· is the divergence operator, expressed in Euclidean
coordinates.

Interestingly, by restricting qt to represent a Gaussian dis-
tribution, it was shown in [8], following [13], that (7) can
be reformulated into coupled ordinary differential equations
(ODEs) on the mean µt and covariance Σt of qt

dµt

dt
= −E [∇V (Zt)]

dΣt

dt
= 2 I − E [∇V (Zt)⊗ (Zt − µt)]

− E [(Zt − µt)⊗∇V (Zt)] ,

(8)

where I is the identity matrix with dimensions d×d and Zt ∼
N(µt,Σt) is Gaussian. Now, provided that we can compute

or approximate the expectations arising in (8), we can find a
minimizer q∗(x) = N(x |m,P ) of L(·) by integrating these
coupled ODEs until convergence.

B. Filtering as Variational Inference

The filtering problem involves inferring the posterior dis-
tribution p(xk | y0:k) for each time step k. To do so, it is
often possible to rely on the familiar innovation-prediction
decomposition [3, Chap. 4]

p(xk | y0:k) ∝ p(yk |xk)p(xk | y0:k−1),

p(xk | y0:k−1) =

∫
p(xk |xk−1)p(xk−1 | y0:k−1) dxk−1.

(9)

For simplicity, we will focus on state-space models with affine
Gaussian transition models

p(xk |xk−1) = N(xk |Ak−1 xk−1 + bk−1, Qk−1), (10)

covering those previously presented in (2) and (4).
In that case, assuming a Gaussian approximation is available

for the previous time step k − 1,

p(xk−1 | y0:k−1) ≈ N(xk−1 |mk−1, Pk−1), (11)

then the prediction step of the filter leads to another Gaussian
distribution p(xk | y0:k−1) ≈ N(xk | m̄k, P̄k) with mean and
covariance

m̄k = Ak−1 mk−1 + bk−1,

P̄k = Ak−1 Pk−1 A
⊤
k−1 +Qk−1.

(12)

Given this predictive distribution, the innovation step com-
putes the approximate filtering distribution

p(xk | y0:k) ∝ exp(−V (xk)), (13)

where the potential function V (xk) is given as

V (xk) = − log p(yk |xk)− log N(xk | m̄k, P̄k). (14)

Consequently, in order to find the parameters of a varia-
tional Gaussian N(xk |mk, Pk) that approximates the posterior
p(xk | y0:k), it suffices to follow the recipe from Section II-A
and integrate (8) up to stationarity, starting from the predictive
parameters (m̄k, P̄k), or any other approximation of (mk, Pk).

When the transition p(xk |xk−1) is not Gaussian, it is possi-
ble to use a similar variational approach to propagate the Gaus-
sian approximation p(xk−1 | y0:k−1) ≈ N(xk−1 |mk−1, Pk−1)
through the non-Gaussian dynamics and approximate the
marginal p(xk | y0:k−1) with another Gaussian N(xk | m̄k, P̄k).
This method was used in [13] to propagate the Gaussian
approximation through dynamics defined by a stochastic dif-
ferential equation. Combining this with our approach is, there-
fore, de facto possible. However, due to the limited scope, we
leave this aspect for future work and only consider Gaussian
dynamics in the remainder of this article.

Finally, because the likelihood of the observations is given
by p(y0:k) = p(y0:k−1)

∫
p(yk |xk)p(xk | y0:k−1) dxk, it is

easy to derive an approximation of the marginal log-likelihood
of the model by recursion. That is because the quantity
ℓk =

∫
p(yk |xk)p(xk | y0:k−1) dxk is evaluated as part of (8),
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and can therefore be used to provide an online estimate of the
log-likelihood increments, which, in turn, can be used, for
example, in a system identification scenario. We return to this
point in Sections II-D and III-A.

C. The Multi-modal Filtering Case

To generalize the variational technique from the previous
section, let us suppose that the filtering distribution at time
k − 1 is instead given by a mixture density

p(xk−1 | y0:k−1) =

Ni∑
i=1

w(i) N(xk−1 |m(i)
k−1, P

(i)
k−1), (15)

with w(i) = 1/Ni,∀i ∈ [1, Ni]. In this case, when the
transition dynamics are Gaussian, it is easy to show that

p(xk | y0:k−1) =

Ni∑
i=1

w(i) N(xk | m̄(i)
k , P̄

(i)
k ), (16)

where ∀i ∈ [1, Ni]

m̄
(i)
k = Ak−1 m

(i)
k−1 + bk−1,

P̄
(i)
k = Ak−1 P

(i)
k−1 A

⊤
k−1 +Qk−1.

(17)

These updates correspond to a tractable prediction step. As a
consequence, we only need to understand how to perform the
innovation step to arrive at the posterior p(xk | y0:k).

Conveniently, [8] also shows that the duality between the
gradient flow (7) and the coupled ODEs (8) extends to the
case of the finite variational mixture of Gaussians

qt(x) =

Ni∑
i=1

ω(i)q
(i)
t (x) =

Ni∑
i=1

ω(i) N(x |µ(i)
t ,Σ

(i)
t ), (18)

with ω(i) = 1/Ni,∀i ∈ [1, Ni]. In this case, rather than a pair
of ODEs, we obtain a system of such ODEs

dµ
(i)
t

dt
= −E

[
∇ log

qt
π
(Z

(i)
t )

]
dΣ

(i)
t

dt
= − E

[
∇2 log

qt
π
(Z

(i)
t )

]
Σ

(i)
t

− Σ
(i)
t E

[
∇2 log

qt
π
(Z

(i)
t )

]
,

(19)

where, for all i, Z
(i)
t ∼ N(µ

(i)
t ,Σ

(i)
t ) is Gaussian, and ∇2

denotes the Hessian operator.
This result means that, given a Gaussian mixture approxima-

tion of the predictive p(xk | y1:k−1), we can obtain a Gaussian
mixture approximation of p(xk | y0:k) by integrating (19) and
following a similar approach to Section II-B.

D. Numerical Considerations and Implementation

In practice, the integrals arising in (8) and (19) are not
available in closed form. Therefore, we need to resort to
numerical integration. This can be done by using any form of
deterministic or stochastic Gaussian quadrature, for example,
Monte Carlo [see, e.g., 14] or sigma-points [3, see, e.g.,]
methods. The two approaches have their pros and cons:
Monte Carlo will give the correct solution on average, while

Algorithm 1 Uni-modal Wasserstein Gradient-flow Filter
1: input: Measurements y0:K and prior (m0, P0)

2: output: Filtering posterior distributions (m1:K , P1:K) and
marginal log-likelihood ℓ = log p(y0:K)

3: Set ℓ← 0
4: for k ← 1 to K do
5: Set ℓk ← logEx∼N(m̄k,P̄k)p(yk |xk)
6: Set ℓ← ℓ+ ℓk ▷ Log-likelihood
7: (mk, Pk)← (m̄k, P̄k)
8: while Not converged do ▷ Innovation
9: (mk, Pk)← I(mk, Pk)

10: end while
11: Set m̄k+1 ← Ak mk + bk ▷ Prediction
12: Set P̄k+1 ← Ak Pk A

⊤
k +Qk

13: end for
14: return (m1:K , P1:K), ℓ

deterministic quadrature is bound to be biased. Nonetheless,
deterministic rules are sometimes more practical when no
stochasticity should be allowed in the system. Whichever is
chosen, we will obtain an approximation

dµt

dt
≈ Fm(µt,Σt),

dΣt

dt
≈ FP (µt,Σt), (20)

of (8) for the choice of V (xk) given by (14). Moreover, the
same approximation scheme can be used to compute log-
likelihood increments logE [p(yk |xk)] under the predictive
N(xk | m̄k, P̄k). In Section III, we use Gauss–Hermite [see,
e.g., 3, Chap. 5] quadrature integration rules with order five.

We now assume that we have chosen an integration method
I for which the stationary solution of (20) is a fixed point:
(mk, Pk) = I(mk, Pk). This can, for example, be an Euler
integration step with a small step size. This fixed-point per-
spective allows us to leverage the implicit function theorem
and bypass the loop when computing gradients for system
identification. For the sake of brevity, we omit the details here
and refer to [15] for the method and to our code1 for a Python
implementation.

Therefore, the final algorithm for variational uni-modal
filtering from Section II-B is given by Algorithm 1. Due to
space constraints, we do not reproduce the algorithm for the
multi-modal case from Section II-C: the procedure follows the
same steps, albeit for a larger system of ODEs.

III. EMPIRICAL EVALUATION

As discussed in Section I, introducing our method is moti-
vated by the problems posed by multiplicative noise and multi-
modality in approximate Gaussian filtering. Consequently, we
aim to demonstrate its effectiveness on these two problems.
We compare the variational Wasserstein filter (VWF) to a
bootstrap particle filter (PF, [16]) using 500 particles and the
continuous resampling scheme from [17]. This resampling al-
lows using the particle filter in a standard parameter estimation

1Implementation of the fixed-point iteration is available under https://github.
com/hanyas/wasserstein-flow-filter/blob/master/wasserstein filter/utils.py
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scenario. The code to reproduce these experiments can be
found at https://github.com/hanyas/wasserstein-flow-filter.

A. Stochastic Volatility with Leverage

First, we consider the stochastic volatility model as given
by (2) and (3). Because the noises ϵk and ηk are correlated,
we need to construct the joint distribution over Xk and its
generating noise ϵk and form the augmented two-dimensional
state ζk =

[
Xk ϵk

]⊤
. The dynamics of ζk are then given by(

Xk+1

ϵk+1

)
=

(
α σ
0 0

)(
Xk

ϵk

)
+

(
µ(1− α)

0

)
+qk

(
0
1

)
, (21)

where qk is a standard Gaussian random variable. With these
dynamics, we have the following observation model

Yk = exp(Xk/2)(ρϵk +
√
1− ρ2 rk), (22)

with rk being a standard Gaussian random variable. Contrary
to the original form of the model, the noise processes are
now de-correlated so that we can apply our method to the
2-dimensional system defined by ζk.

To perform an empirical comparison, we simulate the model
and record three trajectories with K = 1000, K = 1500,
and K = 2000 observations. We use parameters α∗ = 0.975,
µ∗ = 0.5, σ2

∗ = 0.02, and ρ∗ = −0.8. These values correspond
to those in [17], typical of a standard stock market.

To illustrate the problem of using methods based on lin-
earizing the conditional observation mean E [Yk |Xk, ϵk], we
evaluate the marginal log-likelihood of the data approximated
by an extended Kalman filter (EKF) targeting (21) with
parameters (α∗, µ∗, σ∗) while varying levels of correlation ρ
and number of observations K. The resulting curves for the
particle filter of [17], our method, and the extended Kalman
filter are shown in Figure 1. As the (model) correlation ρ
between the two noise-generating processes decreases, the
predictive value of the observations becomes negligible. As
a consequence, the marginal likelihood, as approximated by
the EKF, will struggle to capture the right level of correlation.
This means that calibrating the model using an extended (or
similar) Kalman filter will result in an inconsistent estimate,
at least for the parameter ρ.

To further confirm this hypothesis, we follow [17] and
perform joint maximum likelihood parameter estimation given
K = 1000 observations. We compare our method to theirs and
to an extended Kalman filter. The likelihood is optimized in
all cases using the gradient of the log-likelihood, delivered by
automatic reverse differentiation. In the particular case of the
variational Wasserstein filter, differentiation is made efficient
by our fixed point formulation of the variational calibration.

For a statistical comparison, we repeat this experiment
over ten trials associated with different random seeds and,
therefore, ten distinct sets of observations. We report the
mean plus or minus one standard deviation of the parameter
estimates for each algorithm. However, because the particle
filter is inherently a stochastic method, even for a fixed set of
observations, we perform 25 sub-trials per set of observations
and use the median as a parameter estimate per trial. The
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Fig. 1. Comparing the (normalized) marginal log-likelihood as a function
of the leverage parameter ρ in a stochastic volatility model. We plot the
estimates as returned by an extended Kalman filter (red), a bootstrap particle
filter (blue), and a variational Wasserstein filter (green). The dotted, dashed,
and solid lines correspond to different numbers of observations K = 1000,
K = 1500, and K = 2000. The true value is ρ = −0.8 (vertical line). The
variational Wasserstein and particle filters deliver consistent approximations
independent of the data size, while the extended Kalman filter does not.

TABLE I
STATISTICS FOR PARAMETER ESTIMATION OF THE STOCHASTIC

VOLATILITY MODEL. RESULTS ARE AVERAGED OVER TEN TRIALS.

µ α σ ρ

True 0.50 0.975 0.14 -0.80

PF [17] 0.56 (±0.08) 0.972 (±0.007) 0.15 (±0.02) −0.85 (±0.06)
VWF 0.56 (±0.07) 0.972 (±0.009) 0.15 (±0.02) −0.80 (±0.04)
EKF 0.69 (±0.33) 0.780 (±0.590) 0.21 (±0.25) −0.58 (±0.54)

results are given in Table I and confirm our intuition. The
extended Kalman filter provides inconsistent solutions, while
our method delivers estimates comparable to the estimates of
the particle filter.

B. Multi-Modal Example

We now turn to the multi-modal motivating example (4).
We simulate K = 500 observations from the model, where
we have taken the variance at origin to be δ2 = 1. We
then perform variational filtering using the mixture version
of Algorithm 1 with Ni = 2 mixture components.

Our goal is a correct representation of the filtering posterior.
Thus we will not assess the performance in terms of root mean
square error, which is inappropriate for such problems. Instead,
we qualitatively report the resulting filtering distributions in
Figure 2. There is visually hardly any difference between the
particle filtering estimate and our method.

One caveat to this positive result is that the bi-modal
variational Wasserstein filter tends to collapse when the two
modes are too close to each other. It is still unclear whether
this is a feature of the general method or the ODE solver, and
further investigations are warranted.

IV. CONCLUSION

In this article, we have presented a novel approach for
approximate Gaussian filtering, which avoids the reliance on
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Fig. 2. Performing filtering on a multi-modal dynamical system. We compare
the filtering result of a particle filter (top) with that of a variational Wasserstein
filter equipped with a mixture-of-Gaussians posterior representation (bottom).
Both filters capture the bi-modal posterior distribution (red and blue) inferred
from the observations (green) induced by the true states (black).

enabling assumptions [6], which are usually not amenable
to multiplicative noise and not extendable to multi-modal
distributions. Several questions remain open:

a) Assumptions: We have assumed, for simplicity, that
the transition dynamics are governed by affine Gaussian den-
sities. Overcoming this limitation is an interesting research
question. In fact, in [13], the coupled ODEs (8) were originally
introduced to propagate the Gaussian through a nonlinear
stochastic differential equation.

b) Numerics: The numerical scheme chosen here is,
primarily for ease of exposition, different from that of [8],
which uses an iterative method called JKO [11] after [18],
instead of integrating the differential equation (8) directly. It is
unclear which approach is the best fit for filtering applications.

c) Mixture weights: The weights of the mixture in the
ODE (20) are not allowed to vary. This modeling restriction
needs to be relaxed. However, that may lead to identifiability
issues (for example, a single Gaussian can be represented with
a mixture of two Gaussians with different weights in infinite
ways). Furthermore, introducing time-varying weights should
be done carefully.
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