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Abstract—Graph smoothness is an important prior used for
designing sampling strategies for graph signals as well as for
regularizing the problem of graph learning. Additionally, smooth-
ness is an appropriate assumption for graph signal processing
(GSP) tasks such as filtering or signal recovery from samples.
The most popular measure of smoothness is the quadratic form
of the Laplacian, which naturally follows from the factor analysis
approach. This paper presents a novel smoothness measure based
on the graph correlation. The proposed measure enhances the
applicability of graph smoothness measures across a variety of
GSP tasks, by facilitating interoperability and generalizing across
shift operators.

Index Terms—Graph signal processing, graph smoothness
measures, graph autocovariance, graph autocorrelation

I. INTRODUCTION

Graph signal processing (GSP) is an area of signal pro-
cessing and data analysis that deals with structured data
represented on graphs [1]–[3]. The application areas in which
signals represented on graphs need to be processed are broad
and include sensor networks, brain networks, gene regulatory
networks, and social networks, to name a few [4]–[7]. By
encoding the interaction between samples of data, graphs
provide natural representations of data in irregular domains.
This helps to improve the accuracy of data analysis. The
structure of real-world data graphs varies and can take different
forms, such as adjacency matrices, Laplacian matrices, or their
normalized equivalents. Regardless of the above differences,
specific signal processing tasks are addressed by algorithms of
a unified nature. Therefore, in order to implement data-specific
algorithms, an accurate understanding of how data structures
are physically represented by graphs is critical.

Some graph structures, such as citation networks, are ex-
plicitly collected before processing; others, such as weather
stations and electric power networks, are not known a priori.
Therefore, such data topologies have to be pre-defined and
learned in practice based on vertex’s geometry, data similarity
and association, and other criteria [8], [9], where the optimal
sampling strategies also need to be found [10], [11]. The
underlying graph structure for data can be fully specified by
a graph adjacency matrix, denoted hereafter as A, in which
the (i, j)th element is nonzero if the ith and the jth data
vertices are connected, and the corresponding value represents
the strength of the relationship.

The problem of learning graphs from data samples is gen-
erally ill-posed. Pre-defined properties are usually required to
associate signals with topologies. In a temperature-sensing net-
work, the vertex distances encode physical properties, thus a k-
nearest neighbor graph is constructed to detect malfunctioning
sensors [12]; while [13] assumes the sparsity of the target
graph and then learns the graph topology by optimization
methods. In practice, one of the most important priors to
impose on the data is the smoothness prior. Moreover, in
GSP tasks such as filtering or signal recovery from samples,
smoothness with respect to the chosen shift matrix is a key
assumption as well because it acts as a regularizer in the
corresponding problems [14]–[16]. In the vertex domain of a
graph, smoothness can be described by the absence of abrupt
changes in signal values. Specifically, a graph signal is smooth
if the values in ith and jth vertices, which are connected by
the edge (i, j), tend to be similar. It is often observed in real-
world graph signals. For example, the records at close stations
tend to be similar in a temperature-sensing network across a
region [9].

The typical metric for signal smoothness is the quadratic
form of Laplacian, zTLz [17], where z is the signal on a
graph, which needs to be modeled such that it is close to actual
observations, and L = D − A is the Laplacian matrix of a
graph, which needs to be learned, D is the diagonal degree
matrix with dii =

∑
j aij , and (·)T stands for the transpose.

The quadratic form of Laplacian as a smoothness prior has
been argued for in [9] as the one that naturally follows from
the factor analysis approach, while applying Bayes’ rule for
finding a maximum a posteriori probability (MAP) estimate
of the latent variables that control the graph signal. It has
been demonstrated to work well in practice, but it is defined
specifically for the Laplacian matrix shift operator.

In this paper, we develop smoothness measures for graph
signals using a correlation-based approach as an alternative
to the factor analysis-based approach. We consider the graph
moving average model (GMA) [7], where the sampled signal
is linearly parameterized by moving average coefficients and
the set of powers of shift operators up to order m, that is,
{A, . . . ,Am}. Additionally, we assume that the underlying
signal topology follows a certain probabilistic model. Thus,
the topological statistical priors are inherited by the signal,
thereby enhancing overall consistency. Our correlation-based
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metric measures smoothness by averaging the weighted sum
of covariances between the graph signal and its k-lagged
counterpart. This average considers all possible graphs con-
strained by assumed model. For comparison, the quadratic
Laplacian is based on only one graph representation. The
proposed smoothness measure is also generic in the sense
that it permits extension for any shift operator which can be
expressed as a function of A, including the Laplacian used in
[9]. By specifying graph structure, this smoothness measure
can be parametrized, and thus, it naturally leads to a simple
interpretation (cf. Section 3). Our new smoothness measure is
shown to be effective by applying mismatched shift operator to
data and showing that the graph signal smoothness increases
gradually as the mismatched shift operator approaches the
true one. In other words, we show that as a mismatched
shift operator deviates from the true one, the graph signal
smoothness decreases gradually, which is captured by our
smoothness measure.

II. SIGNAL MODEL AND COVARIANCE MATRIX

Let G = (N , E) be a directed graph that represents the basis
of a graph signal where N is the set of N vertices and E is
the set of edges. The true adjacency matrix of the graph G is
A.

Let us consider the graph moving average (GMA) model
as a more generic graph signal model as compared to just
straightforward signal measurements. The GMA signal model
of order m, denoted as GMA(m), is given as

z = y +

m∑
l=1

θlA
ly (1)

where y ≜ [y1, . . . , yN ]T with y1, . . . , yN ∼ N(0, σ2) being
mutually independent Gaussian random variables with zero
mean and variance σ2, and θ1, . . . , θm are MA coefficients.

The same GMA model can be written in a number of forms,
such as by adjusting the scales of θ’s and A accordingly.
Any GMA(m) model can be written as a GMA(1) model
with

∑m
l=1 θlA

l as its adjacency matrix. However, even if the
adjacency matrix in GMA(m) presentation is unweighted, the
adjacency matrix in the corresponding GMA(1) representation
is weighted in general. Model (1) is a generalization of the
traditional time series MA model, as the MA is obtained when
A is the cycle graph that satisfies aij = 1, if j = i − 1, and
aij = 0, otherwise.

Let us now derive some statistics of the graph signal given
by (1). For simplicity and analytical tractability of the later
studies, we consider the GMA(1) model given as

z = y + θAy = Ãy (2)

where Ã ≜ IN×N + θA and the matrix IN×N is an N ×N
identity matrix. Note that the value of the ith element of the
graph signal z in (2) is given by

zi = yi + θ
∑
j∈Ni

aijyj (3)

where Ni denotes the set of incoming neighbors of vertex i.
Thus, if θ ̸= 0, two vertices are correlated if they are neighbors
or if they have shared incoming neighbors.

The covariance matrix of the graph signal (2) as a function
of Ã can be expressed as

Cz(Ã) ≜ E
{
zzT
}
= E

{
ÃyyTÃT

}
= ÃE

{
yyT

}
ÃT

where E{·} stands for the mathematical expectation. Using the
fact that the elements of y are uncorrelated, i.e., E{yyT} =
σ2IN×N , and substituting the expression for Ã, the covariance
matrix Cz can be written as a function of the adjacency matrix
A as

Cz(A) = σ2ÃÃT=σ2
(
IN×N+θ

(
A+AT

)
+θ2AAT

)
.
(4)

The covariance matrix for the general GMA(m) in (1) can
be obtained by substituting the expression IN×N +

∑m
l=1 θlA

l

instead of Ã into (4). It is important to note that for graph
signals represented on unweighted graphs (that is when the
entries of A take only zero and one values), the diagonal
elements of the matrix AAT in (4) give the numbers of
outcoming neighbors for the vertices. Moreover, the (i, j)th
element of AAT for i ̸= j, i.e., [AAT]i,j , i ̸= j, is the
number of mutual outcoming neighbors of the ith and the jth
vertices.

To enable a direct analysis of the correlation-based graph
smoothness metrics that we introduce in the next section, let
us introduce errors in the adjacency matrix as [18]

W = A+E (5)

where W presents the estimated (inaccurate) adjacency matrix
and E is an unknown error matrix. The covariance matrix of
the graph signal (2) with inaccurately learned graph adjacency
matrix modeled as in (5) can then be derived by simply
substituting the mismatched adjacency matrix W instead of
the actual one A, yielding

Cz(W) = σ2
(
IN×N+θ

(
W +WT

)
+θ2WWT

)
. (6)

Using (5), the covariance matrix (6) can be now rewritten as
a function of the true adjacency matrix A and the mismatched
matrix E, which is assumed to be fixed. Then we get the
covariance matrix

Cz(W) = Cz(A)+σ2θ(E+ET+θ(AET+EAT+EET))

= Cz(A) +Cz(E) + σ2
(
θ2
(
AET +EAT

)
−IN×N

)
.
(7)

It can be seen from (7) that the covariance matrix of
the graph signal (2) with inaccurately learned A is not
only the summation of the covariance matrices of A and
E, but also contains the third cross-correlation component
σ2
(
θ2
(
AET +EAT

)
−IN×N

)
, which is scaled by the signal

variance σ2 and the square of coefficient θ.
Consider the unweighted graph error model [18]

W = A−∆ϵ1 ⊙A+∆ϵ2 ⊙ (1N×N −A) (8)
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where ∆ϵ is the adjacency matrix of the Erdös–Rényi random
graph, ⊙ stands for the Hadamard product, 1N×N is the N×N
matrix full of ones. The Erdös–Rényi graph is G = (N , ϵ) with
random ∆ϵ such that P([∆ϵ]i,j = 1) = ϵ and P([∆ϵ]i,j =
0) = 1 − ϵ for all i ̸= j, and [∆ϵ]i,i = 0 for i = 1, . . . , N ,
where each element of the matrix is generated independently
of the other elements [19], and P(·) denotes the probability.
The parameter ϵ1 (resp. ϵ2) then describes the probability of
edge removal (resp. addition).

III. CORRELATION-BASED GRAPH SMOOTHNESS
METRICS

First, we introduce graph autocorrelation as a measure of
smoothness, and then we generalize it for multivariate signals
to introduce graph autocorrelation matrix.

We start with the autocovariance of a graph signal. Let us
first define the centering matrix H ≜ IN×N −1N×N/N . The
matrix H is symmetric and idempotent. Centering the graph
signal Hz removes the signal’s mean, and thus, forces the first
moment to be 0 [20]. The graph signal autocovariance of lag
k with respect to W is then defined as

sz,k(W) ≜ E
{

1

N − k
(Hz)TWkHz

}
. (9)

Substituting the graph signal model (2) into (9), we obtain

sz,k(W) =
1

N − k
E
{
yTÃTHWkHÃy

}
=

σ2

N − k
tr
{(

H+ θATH
)
Wk (H+ θHA)

}
, (10)

where tr{·} stands for the trace of a matrix. Here the property
tr {AB} = tr {BA} has been used. Thus, graph autocovari-
ance is a weighted sum of the covariances between the vertices
of a graph signal.

The graph autocorrelation of lag k as function of W is
defined as

rz,k(W) =
E
{
(Hz)TWkHz

}
(E{∥Hz∥2}E{∥HWkz∥2})1/2

(11)

where ∥ · ∥ stands for the Euclidean norm of a vector.

A. Autocorrelation of Inaccurate Adjacency Matrix

If model (8) is adopted for inaccurate adjacency matrix W,
then the graph autocorrelation (11) naturally depends on the
parameters ϵ1 and ϵ2. For simplicity, assume that A = ∆α,
i.e., true adjacency matrix A also follows the Erdös-Rényi
model with the probability parameter α. The nonzero values
of A and W are denoted by a and w, respectively.

Then for graph autocorrelation rz,k(W) of signal (2), we
would like to derive the expected value EA,W,z{rz,1(W)}
for the lag k = 1, where both A and W are considered to be
random. Even though this expected value is an average over
multiple implementations of Erdös-Rényi graphs A, we have
verified by extensive simulations that the graph autocorrelation
values are very similar for any specific and fixed realization
of A. The expected graph autocorrelation value can be then

expressed in terms of the GMA coefficient θ, the probability
parameter α in the graph model A = ∆α, and the parameters
ϵ1 and ϵ2 in the graph error model in (8). The expected value
EA,W,z{rz,1(W)} can be used for example to verify that
GMA signal is smoother with respect to its adjacency matrix
than the mismatched adjacency matrix. Specifically, the larger
the graph autocorrelation term in (11), the smoother the graph
signal. More details are illustrated in Section IV.

Now we can derive the expected value of the graph auto-
correlation for graph signal (2) and graph error model (8). Let
us start with rescaling the matrices A and W and the variance
σ2 so that

1
NE{∥Hz∥2} = 1
1
NE{∥HAz∥2} = 1
1
NE{∥HWz∥2} = 1.

(12)

For given values of N , α, ϵ1 and ϵ2, the only unknowns
in (12) are a, w and σ2. Hence, we can find a, w and
σ2 by simply solving the system of three equations (12).
To calculate expected values in (12), we need the fact that
E{yiyj} = σ2, if i = j and E{yiyj} = 0, otherwise; in
conjunction with the assumption that the elements of the
matrices ∆α, ∆ϵ1 and ∆ϵ2 are statistically independent both
within each matrix and between them.

The expectation in the first equation in (12) is approximated
as follows. We start by substituting (2) into the expectation in
the first equation in (12), and opening the square

E{∥Hz∥2} = E{∥H (θAy + y) ∥2}

= E


N∑
i=1

θ

N∑
k=1

aikyk + yi −
1

N

N∑
j=1

(
θ

N∑
l=1

ajlyl − yj

)2


= E


N∑
i=1

θ

N∑
k=1

aikyk + yi −
1

N

N∑
j=1

(
θ

N∑
l=1

ajlyl − yj

)
×

θ

N∑
k′=1

aik′yk′ + yi −
1

N

N∑
j′=1

(
θ

N∑
l′=1

aj′l′yl′ − yj

) .

(13)

After algebraic manipulations of (13), we obtain

E{∥Hz∥2}

= E


N∑
i=1

θ2
N∑

k=1

a2iky
2
k − 2

N

N∑
j=1

(
θ2

N∑
k=1

aikajky
2
k − θaijy

2
j

)

+ y2i −
2

N

N∑
j=1

(
θajiy

2
i − yiyj

)
+

θ2

N2

N∑
j=1,j′=1,l=1

ajlaj′ly
2
l

+
2θ

N2

N∑
j=1,l=1

ajly
2
l +

1

N2

N∑
j=1

y2j


= σ2

(
N2θ2αa2 − 2Nθ2αa2 − 2N2θ2α2a2 − 2Nθαa+N

− 2Nθαa− 2 +Nθ2αa2 +N2θ2α2a2 + 2Nθαa+ 1
)
.
(14)
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Dropping the negligible terms in (14), i.e., the zero-order terms
of N and first-order terms of N that also include a2, gives the
approximation

1

N
E{∥Hz∥2} ≈ σ2

(
(α− α2)θ2a2N − 2αθa+ 1

)
. (15)

The derivations of the expected values of the latter two
equations in (12) are tedious, but otherwise follow the same
steps. Thus, we skip these derivations for the sake of brevity.
The first two equations in (15) do not depend on w. Therefore,
a and σ2 can be found from the first two equations,{
σ2((α− α2)θ2a2N − 2αθa+ 1) = 1,

σ2((α2 − α3)θ2a4N2 − 2α2θa3N + (α− α2)a2N) = 1.

After solving for a and σ2, the parameter w can be found from
the last equation in (12) as

w =
(
σ2
(
−α3N2θ2a2(ϵ1 + ϵ2 − 1)2 + αN2θ2a2(ϵ2 − ϵ22)

+α2N2θ2a2(1− ϵ1 + ϵ2(2(ϵ1 + ϵ2)− 3))

+α2N(θ2a2(ϵ1 + ϵ2 − 1)− (ϵ1 + ϵ2 − 1)2)

+αN(1− ϵ1 + ϵ2(2(ϵ1 + ϵ2)− θ2a2 − 3))

+ N(ϵ2 − ϵ22) + α(ϵ1 + ϵ2 − 1)− ϵ2
))−1/2

.

Finally, for the mismatched matrix W in (8), a closed-form
approximate expression for the expected autocorrelation value
of the graph signal z as a function of α, θ, ϵ1 and ϵ2 is

EA,W,z{rz,1(W)} ≈
− wϵ2 + σ2(θ awN(α− α2)− αw)(1− ϵ1 − ϵ2).

(16)

IV. SIMULATION EXAMPLE

In our simulation example, we examine how the expected
graph autocorrelation derived in (16) changes when the matrix
with respect to which it is computed is gradually changing
from the adjacency matrix of the signal according to model
(8). We generate graph signal z as a GMA(1) signal with
unweighted Erdös-Rényi adjacency matrix A = ∆α with
probability α = 0.05, and the GMA coefficient is θ = 0.5.
Furthermore, we compute 2000 graph autocorrelations. For
each repetition, a new Erdös-Rényi adjacency matrix A is
generated. The graph size is N = 500.

Fig. 1 displays the theoretical and simulated graph au-
tocorrelation as functions of ϵ1 and ϵ2, respectively, while
the other one remains fixed. The figures show that the graph
autocorrelation is decreasing with respect to both ϵ1 and ϵ2,
which hints that graph autocorrelation might be useful to
estimate the structure of the graph even if we only have a
single realization of the graph data.

V. CONCLUSION AND DISCUSSION

In this paper, a new correlation-based graph smoothness
measure is introduced for graph signals as an alternative to
the quadratic form of Laplacian that follows from the factor
analysis approach. The usefulness of this correlation-based
graph smoothness measure is also demonstrated by a synthetic
example.

Fig. 1: (a). Theoretical (solid) and simulated (dash) values of
graph autocorrelations. The lines from top to bottom are given
by ϵ2 = 0, 0.02, 0.04, 0.06; (b). The lines from top to bottom
are given by ϵ1 = 0, 0.1, 0.2, 0.3.

In terms of other examples, it is worth pointing out that
similar, but preliminary ideas of graph autocorrelation has
been used for multivariate graph signals in the context of
blind source separation (BSS) of graph signals [7]. Namely,
let X ∈ RP×N denote centered P -dimensional graph signal
generated as a mixture of independent components according
to the model X = ΩZ, where Ω ∈ RP×P is a full rank mixing
matrix, Z ∈ RP×N is the matrix of P mutually independent
graph signals with zero means and unit variances. The goal
of graph-BSS is to estimate the unmixing matrix Γ = Ω−1

using only the signal matrix X. Then, letting Xw = Ŝ
−1/2
0 X

be the whitened signals, where Ŝ0 is the sample covariance
matrix of X, the measure of smoothness used for estimating
the unmixing matrix Ω−1 is the autocorrelation matrix or the
set of autocorrelation matrices given by

Ŝk(W) =
1

N − k
(XwW

kXT
w), k = 1, . . . ,K. (17)

Then (17) can be diagonalized or jointly diagonalized, for
example, as in Grade method [7] (see also [18]) to find in-
dependent components. Thus, this measure can be considered
as instantaneous (single sample) multivariate extension of the
ideas presented in this paper.
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