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Abstract—Signed graphs—graphs with both positive and neg-
ative edge weights—are useful to specify pairwise dissimilarities
as well as similarities in data. However, unlike graph variation
operators (e.g., adjacency and graph Laplacian matrices) for
unsigned graphs, the spectra of signed graph variation operators
are not well understood in general. The lone exception is balanced
signed graphs: there exists a one-to-one mapping of eigen-pairs
between a balanced signed graph and its corresponding unsigned
positive graph, which means that spectral filters for well-studied
positive graphs can be reused if signed graphs are balanced. In
this paper, we propose a simple yet effective method to balance a
signed graph. Specifically, we balance a signed graph by removing
carefully chosen edges, while the cuts of positive / negative edges
are minimized / maximized, respectively. Experimental results on
graph signal denoising and interpolation show that our signed
graph balancing algorithms achieved promising results.

Index Terms—Signed graph, graph signal processing

I. INTRODUCTION

Graph signal processing (GSP) is a field of study where
collections of discrete data on a network are treated as signals
on a graph, and are analyzed based on their pairwise relations
[1]-[3]. Given a graph embedded with pairwise signal relations
as edges, various techniques of signal processing such as
sampling [4], [5] and filtering [6], [7] are extended to data
on a network.

Traditional GSP mainly focuses on signals on unsigned
positive graphs, where similarity relations of incident nodes
are encoded as non-negative edge weights. However, there are
practical scenarios where there exist pairwise dissimilarities
as well as similarities. A prime example is social networks,
where nodes represent individuals, and their likes / dislikes of
others are encoded as positive / negative edges, respectively.
The resulting structure is a signed graph—a graph with both
positive and negative edge weights [8]-[10]. Unlike unsigned
graphs, signed graphs provide flexibility in modeling of data
with inherent anti-correlations. Thus, extending GSP theory
and applications to signed graphs is a crucial research topic.

It is known that the combinatorial graph Laplacian matrix
L of an unsigned graph is positive semi-definite (PSD), i.e.,
its smallest eigenvalue Ay, (L) > 0 [11]. Interpreting non-
negative eigenvalues {\,, } of L as graph frequencies, efficient
graph filters in the frequency domain have been developed for
different applications [12]-[14]. On the other hand, spectra
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of signed graph variation operators, such as adjacency and
Laplacian matrices, are not well understood in general. One
notable exception is balanced signed graphs': there exists
a one-to-one mapping of Laplacian eigen-pairs between a
balanced signed graph and its corresponding unsigned positive
graph [15]. This means that well-studied spectral filters for
positive graphs can be reused for corresponding balanced
signed graphs.

Given the desirability of balanced signed graphs, in this
paper we propose a balancing algorithm to convert an unbal-
anced signed graph to a balanced one based on graph cut [16].
According to the Cartwright-Harary Theorem (CHT) [17], a
signed graph is balanced when the nodes can be split into two
clusters, so that edges within the clusters are positive only,
and those between the clusters are negative only. Leveraging
CHT, we focus on either the positive or negative edges in
a given unbalanced graph, and cluster its nodes such that the
smallest amount of positive edges are removed, or the majority
of negative edges are preserved, when balancing the graph. We
then simply remove all inconsistent edges, i.e., positive edges
connecting nodes between different clusters and negative edges
connecting within the cluster. Experimental results demon-
strate that our graph balancing method was computationally
efficient compared to an existing greedy method [18], and
the balanced graph exhibited promising performance in signal
denoising and interpolation.

Notation: Vectors and matrices are written in bold lowercase
and uppercase letters, respectively. Operator || - ||, denotes the
¢-p norm and || - || p represents the Frobenius norm. The (3, j)
element of the matrix A and the ¢th element in the vector a
are denoted as a;; and a;. The jth column of matrix A is
denoted as a;. The identity matrix and the vector of all ones
are denoted as I = diag(1,...,1) and 1 =[1,...,1]T.

II. PRELIMINARIES
A. Signed Graphs

A signed graph is a weighted graph with arbitrary real
valued edge weights. Mathematically, an undirected graph is
denoted as G = (V, £) with set of nodes V = {v1,va,...,un}
and set of weighted edges £ = {w; j }v;,»;ev. The weight of an
edge between v; and v; is denoted as w; ;. The edge weights
are described with weighted adjacency matrix W € RV*N,
Throughout the paper, we assume w;; = 0, i.e., the graphs

YA graph is balanced if there exist no cycle of odd number of negative
edges.
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have no self loops. We denote the degree matrix of a graph
with D = diag(dy,...,dN), where d; = Zj |w; ;| is the
absolute sum of edge weights incident on node 7. The signed
graph Laplacian is defined as L = D — W [19].

By this definition, the signed graph Laplacian will always
be a diagonally dominant matrix with non-negative diagonal
elements, which ensures the Laplacian to be PSD. More
specifically, let x € RY be a signal on G (graph signal), the
following inequality is always satisfied for any x.

1 .
L= 530> fwisl (i — sign(wi;)z;)* 20 ()
T J

where ; and x; are signal values on the node 7 and node
4, respectively. Let L = D — |W| be an unsigned graph
Laplacian, a constant vector x = 1 corresponds to the lowest
eigenvalue of L, ie, 1TL1 = 0. In contrast, the equality in
(1) will hold iff the signed graph is balanced.

A signed graph is said to be balanced if the product of edge
weights in any cycle is positive [17]. Intuitively, a signed graph
is balanced when the nodes can be split into two disjoint sets
V7 and Vs, whereas all edges within each set are positive,
and edges between the sets are all negative. Let us define
an indicator vector s = {—1,1}", where s; = 1 if v; € Vi,
s; = —1if v; € V,. If the graph is balanced, for pairs of nodes
(i,7) connected with a positive edge, we have s; = s;, and
for pairs connected with a negative edge, we have s; = —s;.
Hence, s Ls = 0 and the equality in (1) holds.

Balanced signed graph Laplacian is known to have same
eigenvalues as those of the unsigned counterpart L. That is,
using indicator matrix S = diag(s) the relation between
eigendecompositions of L and L can be shown as,

L=UAU" =SUAU'S" =SLS". )

Hereafter, we calculate the normalized Laplacian of an un-
signed graph as L = D~ 2LD~ 2, where D = diag(W1).

B. Signed Graph Fourier Transform
An unsigned graph Laplacian L € RV*N can be de-

composed into L = UAUT, where U = [U5,,---5 05, ]
is the eigenvector matrix and A = diag(j\l, RN S\N) is the
eigenvalue matrix. Without loss of generality, we assume that
the eigenvalues are in ascending order as A\; < Ao < ..., An.
Let x € RY be a vector of N signals observed on N nodes.
Graph Fourier transform (GFT) is defined as x = UTx as the
inner product of eigenvectors and the graph signal.

In GFT, the eigenvectors and the eigenvalues are regarded
as a Fourier basis of signals and its graph frequencies, re-
spectively [1]. For the signed graph Laplacian L, GFT can
also be defined with U but its oscillation patterns of U are
different from those of U. With (2), we can define GFT for
a balanced signed graph from the GFT of its corresponding
unsigned graph as x = U'x, where U = SU.

C. Signed Graph Learning

Given a data matrix X = {x; }X_, where x;, € RY is the
kth observation of a set of graph signals, the generalized graph

Laplacian L can be estimated from data using the following
formulation of graphical Lasso (GLASSO) [20], [21]:

min — log det (L) + tr(LC) + p||L||1, 3)

where C = %XXT is the empirical covariance matrix calcu-
lated from data, and L is a set of positive-definite matrices.
The optimization problem in (3) is convex and can be solved
using a variant of block coordinate descent (BCD) algorithm
[22]. Specifically, we update the row/column of a dual variable
C = L~! until convergence. We find the optimal solution
for the row/column-wise subproblem with alternating direction
method of multipliers (ADMM).

ITI. SIGNED GRAPH BALANCING

In this section, we introduce two proposed graph balancing
algorithms based on a graph cut perspective. We first describe
the problem formulation, followed by descriptions of the
proposed methods inspired by graph cut.

A. Problem formulation

Let us consider a signed graph G with its signed Laplacian
L. The idea behind our proposed method is that graph bal-
ancing can be regarded as a bipartition of the signed graph.
As previously mentioned, if the signed graph is balanced, all
positive edges are located within two distinct clusters and no
positive edges exist between the clusters. Moreover, its nodes
are bipartite with respect to the negative edges, i.e., negative
edges only connect two clusters and there are no negative
edges within clusters.

Leveraging the fact, if we could split the graph while 1)
minimizing the number of positive edges between the clusters,
or 2) maximizing the number of negative edges between the
clusters, a balanced graph can be achieved just by removing
a small fraction of inconsistent edges. Therefore, we cast
graph balancing problem as graph clustering. While graph
clustering is combinatorial and NP-hard as well as a known
graph balancing algorithm, there exist a number of spectral
clustering algorithms [16].

The first problem, a minimization of positive edges between
clusters, can be seen as MinCut with respect to positive edges.
Moreover, the second problem, the maximization of negative
edges between clusters, can be seen as MaxCut with respect
to negative edges. The proposed methods are overviewed in
Fig. 1.

B. MinCut-based Balancing

For MinCut-based balancing, we consider to balance a given
signed graph by removing a small fraction of positive edges.
This can be realized by splitting the nodes into two clusters
while minimizing the number of positive edges between them,
and then removing all inconsistent edges from the graph.

When splitting the nodes, the topological properties of the
original graph should be mostly maintained. Therefore, we
employ Normalized Cut (NCut) [16]. In NCut, the nodes are
partitioned to minimize the number of edges between clusters
with a constraint that the absolute sum of edge weights within
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Fig. 1. Overview of the proposed graph balancing methods. The colors of
nodes correspond to clusters.

Edge removal

each cluster is similar. We utilize this property for splitting
the nodes in the signed graph.

For the first step of MinCut-based balancing, we create an
unsigned graph that only contains the positive edges of the
given signed graph G = (V,£). We define an unsigned graph
Gros = (V, EP), corresponding to G where EP® denotes the
set of all positive edges in £. The weighted adjacency matrix
of GP% is defined as follows:

WPos — Wi, if Wi, j >0
0 otherwise.

“)

The graph Laplacian of GP* is calculated as s =
diag(WP*1) — WP and we denote the corresponding nor-
malized graph Laplacian as LS. Then we consider the NCut
problem for separating the nodes of GP* into two distinct node
sets V; and V.

An approximated solution of NCut on GP* is given by the
eigenvector corresponding to the second smallest eigenvalue
of ﬁp°s, i.e., Fiedler vector [23]. As a result, the proposed
MinCut-based balancing is computed as follows:

1) Compute the second smallest eigenvalue A (LP) and

the corresponding Fiedler eigenvector us.

2) Classify all nodes in two clusters V; and Vs, by perform-

ing k-means clustering on 0.
3) Color nodes in V; as C; and nodes in Vs as Cs.
4) Remove any inconsistent (negative) edges within clus-

ters and inconsistent (positive) edges in between clusters.

C. MaxCut-based Balancing

For MaxCut-based balancing, we consider to balance a
graph by removing a small fraction of negative edges. This
can be realized by splitting the nodes into two clusters while
maximizing the number of negative edges between them, and
then removing any remaining inconsistent edges from the
graph. Such a partitioning can be achieved by solving the
MaxCut problem with respect to negative edges. In contrast to
MinCut problem which can be relaxed to spectral clustering,
MaxCut problem is NP-complete [24] and there have been few
relaxation approaches. Instead, we consider a dual of MaxCut
where we separate the nodes while having the minimum
number of negative edges within each cluster.

To group the nodes into two clusters so that each cluster has
the fewest edges within them, we focus on the polarity of the
eigenvector Un,x that corresponds to the largest eigenvalue
of the normalized unsigned graph Laplacian L. Since Ty
represents the frequency mode of the highest graph frequency,
the polarities of elements in Up,, is expected to oscillate
between all the pairs of connected nodes. Hence, if we split
the nodes based on the polarities in Ti,,y, edges within the
two clusters are expected to be mostly disconnected [25].

Similar to MinCut-based balancing, we first create an un-
signed graph which consists of only negative edges of the
signed graph. Given a signed graph G = (V, ), let us define
an unsigned graph G™¢ = (V,E"¢), where £™8 is a set of
all negative edges in £. The weighted adjacency matrix and
graph Laplacian of G" is defined as

Wneg — 7’[1)77] lf w77J < 0 . (5)
0 otherwise.

The graph Laplacian of G"® is calculated as Lree —
diag(W™1) — W€ _Tts corresponding normalized Laplacian
matrix is denoted as L™¢. We perform a bipartition of Gy, With
respect to the polarities of the elements in Gyax corresponding
to the largest eigenvalue of L€, This is expected to split the
nodes having the minimum possible number of negative edges
within each cluster [25].
As a result, the proposed MaxCut-based balancing is com-
puted as follows:
1) Compute the maximum eigenvalue /\maX(I:“eg) and the
corresponding eigenvector Upyy.
2) Classify all nodes in two clusters V; and Vs by perform-
ing k-means clustering on Upax.
3) Color nodes in V; as C and nodes in Vs as Cl.
4) Remove any inconsistent (negative) edges within clus-

ters and inconsistent (positive) edges between clusters.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of graph
balancing with 1) signal denoising based on graph lowpass
filtering (LPF) and 2) signal interpolation. We compare the
proposed graph balancing methods against a greedy method
inspired by [18]. The greedy method (abbreviated as Greedy
hereafter) is given below:

1) Given an unbalanced graph G, initialize a set S with a

randomly selected node v;. Color v; as Cf.
2) For all nodes incident on S, calculate the number of

consistent edges if target node is colored Cy or Cs.
3) Find node v; and corresponding color C or Cs, in

which the number of consistent edges incident on set
S is maximized.
4) Remove inconsistent edges from v; to S. Add v; to S.
5) Repeat Steps 2 and 3 until all nodes are added to S.
For Step 3, a random node is selected and colored C; if
the number of consistent edges to S is equal or zero among
all candidate nodes. Greedy splits nodes in two clusters while
maximizing the number of edges to be preserved regardless
of their signs.
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Fig. 2. (a) Resulting RMSE of denoising with balanced graphs, and (b)

computational time of each method. Both plots are in log-scale.

Signal Denoising

Settings: We use synthetic data to validate the benefit of
balancing graphs by graph LPF-based denoising [26]. We
compare relative mean squared errors (RMSEs) between the
original and filtered signals. We also compare the computation
time for graph balancing.

We generate a synthetic unbalanced signed graph Ggynn
based on the stochastic block model (SBM) [27] with two
communities V; and Vs as follows:

1) Generate a SBM graph Gy,s having N nodes with two
communities. The edge connection probability within a
cluster is set to p = 0.15 and that between clusters is
set to ¢ = 0.15.

2) Set edge weights uniformly between [0, 1].

3) From Gy, flip the signs for 90% of edges between the
clusters and 10% of edges within clusters.

The number of nodes is set to N = {250,500, 750, 1000,
2500, 5000}. A synthetic signal x is generated from Gy as
z; = 1 when ¢ € Vi, and x; = —1 when ¢ € V5. A noisy
signal is given by y = x + n where n ~ N(0,0?) is an
additive noise vector. We set the noise level to o2 = 0.50.
Ten signed graphs are generated and 300 graph signals are
simulated for each graph. The graph spectral response of the
used graph filter is represented as g(A\;) = 1/(1 + ;).
Results: Fig. 2(a) shows the RMSE comparison. As observed,
filtered signals with the balanced graphs achieve lower RMSEs
than that with the unbalanced graph. This is due to the
minimum eigenvalue of the unbalanced signed graph being
nonzero, while the minimum eigenvalue of the balanced graph
is always zero.

Fig. 2(b) summarizes the computational time among the
balancing methods?. The proposed graph balancing methods
outperform Greedy in computational time by the factor of 20.

Signal Interpolation
Settings: In this experiment, we validate the effectiveness of
our graph balancing methods with signal interpolation [28].
We compare the RMSEs of the ground truth and interpolated
signals. We describe the details of the real datasets below.
1) Canadian Parliament Voting Records Dataset (CPV):
It consists of Canadian Parliament voting records from
the 38th parliament in 2005 and contains voting records

2All experiments, including interpolation, were performed in MATLAR
R2021b on a PC with Apple M1 chip (8-core CPU) and 16 GB RAM.

TABLE I
CHARACTERISTICS OF ESTIMATED AND BALANCED GRAPHS.

CPV AMP
Methods | [WHp [ [W—r [ [WT]r [ [W_]lr
Original | 16.35 1.885 0.6810 | 0.4489
MaxCut | 11.62 1.276 0.5465 0.1044
MinCut | 13.29 0.7898 | 0.3589 | 0.0536
Greedy 15.60 1.136 0.6194 | 04225

(a) GLASSO (b) MaxCut (c) MinCut (d) Greedy
(e) GLASSO (f) MaxCut (g) MinCut (h) Greedy

Fig. 3. (a)(e) A part of weighted adjacency matrix estimated with GLASSO.
The color indicate edge weights. (b)(f) Graph balanced with MaxCut. (c)(g)
Graph balanced with MinCut. (d)(h) Graph balanced with Greedy. The clusters
are plotted in yellow and blue. Pale yellow (light blue) colored edges indicate
positive (negative) edge weight. The nodes are clustered according to their
political parties. The rows correspond to different dataset, CPV (top) and
AMP (bottom).

of 308 individual members voted in 190 elections. The
votes were recorded as —1 for no and 1 for yes and 0
for abstain/absent. A signal for a vote is thus defined as
xr € {-1,0,1}308,

2) Almanac of Minutely Power Dataset Version 2 (AMP): It

[29] contains two years of ON/OFF status data sampled
at 1-minute intervals for 23 residential appliances in a
Canadian household. We use 104000 recordings as graph
signals. We defined —1 for status OFF and 1 for ON.
Hence, a signal for a given time instance is defined as
re{-1,1}%.

First, the unbalanced graph is estimated from the empir-
ical covariance matrix with the first 90% recordings using
GLASSO mentioned in Section II-C. Then, the estimated
signed graph is balanced using MaxCut, MinCut, and Greedy.
The remaining 10% of data are used for interpolation where
a fraction of signal values is set to zero as missing values.
The missing ratio is set to s = {0.2,0.3,0.4,0.5,0.6,0.7}.
We follow the formulation from [28] for signal interpolation.
Results: First, we show the characteristics of graphs balanced
with different methods. The Frobenius norm of positive and
negative edge weights for the estimated and balanced graphs is
summarized in Table I. The balanced graphs as well as a part
of the adjacency matrix of the estimated graphs are visualized
in Fig. 3.

The adjacency matrices in Figs. 3(a) and 3(e) show that
both real world data have strong anti-correlation among some
pairs of nodes. From Table I and Fig. 3, we observe that
1) MinCut preserves more positive edges than MaxCut, and
2) MaxCut preserves more negative edges than MinCut. In
terms of Frobenius norm of the remaining edges, Greedy is
comparable with MinCut and MaxCut.
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Fig. 4. Signal interpolation RMSEs for estimated graph (Original) and
balanced graphs, under different missing ratios. The RMSEs are averaged
over 30 independent runs.

In Fig. 4, we show the RMSE:s of signal interpolation results
on the different graphs. For both datasets, interpolation with
balanced graphs performs better than that with the unbalanced
graph. Although the graphs balanced with Greedy have more
edges than those with MinCut and MaxCut as shown in Table
I, all balanced graphs have shown similar results for signal
interpolation with CPV dataset. For AMP dataset, MaxCut
and Greedy has comparable RMSEs and are slightly better
than MinCut. On the other hand, the performance of MinCut
has dropped for AMP dataset. This suggests that remaining
negative edges affect the performance: All the balancing meth-
ods have comparable |W~||r for Canadian House dataset,
while MinCut removes many negative edges for AMP dataset.
Further investigation of the balancing effect is left for our
future work.

V. CONCLUSION

In this paper, we present two algorithms for balancing
signed graphs. The proposed methods are based on graph
cuts, and is computationally efficient compared to the existing
greedy method. In the applications with synthetic and real data,
we demonstrated that the balanced graphs with the proposed
algorithm exhibit promising results for graph signal denoising
and interpolation.
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