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Abstract—Traditional ultrasound synthetic aperture imaging
relies on closely spaced measurement positions, where the pitch
size is smaller than half the ultrasound wavelength. While
this approach achieves high-quality images, it necessitates the
storage of large data sets and an extended measurement time.
To address these issues, there is a burgeoning interest in exploring
effective subsampling techniques. Recently, Deep Probabilistic
Subsampling (DPS) has emerged as a feasible approach for
designing selection matrices for multi-channel systems. In this
paper, we address spatial subsampling in single-channel ultra-
sound imaging for Nondestructive Testing (NDT) applications.
To accomplish a model-based data-driven spatial subsampling
approach within the DPS framework that allows for the optimal
selection of sensing positions on a discretized grid, it is crucial to
build an adequate signal model and design an adapted network
architecture with a reasonable cost function. The reconstructed
image quality is then evaluated through simulations, showing that
the presented subsampling pattern approaches the performance
of fully sampling and substantially outperforms uniformly spatial
subsampling in terms of signal recovery quality.

Index Terms—Signal Spatial Subsampling, Signal Reconstruc-
tion, Deep Learning, Ultrasound NDT

I. INTRODUCTION

Ultrasound imaging is widely used in Nondestructive Test-
ing (NDT) and medical applications due to its mobility,
reliability, availability and cost-effectiveness. However, during
the scanning process, satisfying the spatial Nyquist condition
often requires a small spacing between elements, which leads
traditional sensors to use a large number of measurement
positions for covering a given aperture. Such dense sampling
can significantly increase the measurement time and impose
substantial demands on the hardware for data acquisition, stor-
age, and processing. Therefore, developing advanced spatial
subsampling algorithms is of great importance, as subsam-
pled data can generate high-quality images when properly
processed [1].

Spatial subsampling refers to the reduction of sensor loca-
tions or array channels in data acquisition. This task is closely
tied to optimal sensor placement and sparse array design
when the spatial domain is discretized into a grid. A spatial
subsampling algorithm aims to achieve various objectives,
taking into account multiple performance parameters that
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vary depending on the particular scenario. These parameters
typically include either the beam pattern or the image quality.
For example, Cohen introduced the sparse nonlinear Convo-
lutional Beamforming Algorithm (COBA), which achieves an
improved beam pattern over that of Delay and Sum (DAS)
beamforming by using fewer array elements [2]. Diamantaras
introduced Learn-to-Select (L2S) using Softmax selection for
the choice of antennas from a dense Uniform Linear Array
in order to obtain the desired beam pattern [3]. Mamistvalov
developed a deep-learning-based approach for reconstructing
B-mode images from temporally and spatially subsampled
channel data, incorporating the Structural Similarity Index
Metric (SSIM) [4] into the loss function [5]. However, this
approach only excels in medical images due to challenges
such as reverberation, non-linear propagation and aberrating
layers in the human body. Moreover, Huijben proposed Deep
Probabilistic Subsampling (DPS) algorithm by leveraging
the Gumbel-Softmax reparameterization trick to select array
channels while ensuring superior reconstructed image quality
in medical applications [6]. Similarly, in ultrasound NDT,
Compressed Sensing (CS) theory allows for subsampling
of the measured signal in both the spatial and frequency
domains without sacrificing high-resolution reconstructions
[7]. Furthermore, we are doing a localization task with a
sensor array where the sensor placement affects the estimation
performance, so parallels can be drawn between ultrasound
and radar localization [8].

In this study, we focus on practical applications of ultra-
sound NDT and implement a model-based data-driven spa-
tial subsampling algorithm under the DPS framework. Our
technique enables the selection of optimal sensing locations
for single-channel synthetic aperture ultrasound imaging. To
achieve this, we construct a specific signal model, select an
appropriate optimization target and design a tailored neural
network with reduced complexity. We accelerate the learning
process by exploiting the data model to enforce the required
subsampling matrix structure without the need of constraints or
penalty terms in the cost function. Additionally, we evaluate its
performance by comparing the image quality with that of fully
sampled and uniformly spatially subsampled signal recovery.

II. SIGNAL MODEL AND PROBLEM FORMULATION

For simplicity, we will consider the pulse-echo measure-
ments at a multitude of sensor locations on a spatial grid,
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Fig. 1. 2-dimensional measurement design illustration. A transducer starts
moving from the origin across the surface of the specimen, transmitting pulses
and receiving echoes at pre-determined positions that are equidistant from each
other. The 2D specimen is divided into 16 regions for further use in III-C. The
whole specimen is discretized into Nx × Nz fine square cells, for example
in the region-10, with each cell indicating a possible scatterer location and
carrying a scattering amplitude.

which can also be interpreted as a special case of phased array
measurements. As shown in Fig. 1, the sensor moves along a
specified axis, transmitting and receiving pulses at predefined
locations. To represent a received signal p(t), called an A-scan,
we model the pulse echo by a real-valued Gabor function. We
then assume that each A-scan is a linear combination of time-
shifted, energy-attenuated versions of the transmitted pulse
function with inverted phase, where each shift is caused by
an isolated flaw, as follows [9]:

p(t) =

K∑
k=1

ake
−α(t−τk)

2

cos(2πfc(t− τk)) + n(t) (1)

Here, the lower case k indicates the scatterer index and the
upper case K is the total number of scatterers; ak is the
scattering amplitude, which contains information about the
reflectivity of the k-th scatterer and the energy attenuation in
the medium. The time delay τk refers to the pulse propagation
time between a transducer and the k-th scatterer. As for
the transducer calibration information, we model the center
frequency as fc = 4 MHz, and the bandwidth factor as
α = f2

c . Finally, the additive white Gaussian noise (AWGN)
is added to each received echo and is denoted as n(t).

We assume that the transducer samples at a rate of fs =
60 MHz for an observation period T . So a measurement signal
p(t) at one location consists of Nt = fs · T samples, which
can be rewritten as a vector p ∈ RNt . After collecting all the
A-scans at Nx ∈ N locations along the scan axis, we stack all
Nx ·Nt samples into an observation vector y ∈ RNxNt , which
is in form of [pT

1 pT
2 . . . pT

Nx
]T. Assuming an idealized

point scatterer model, we can express y as:

y = Ax+ n (2)

where x ∈ RNxNz is a vectorized specimen map of Nx ×Nz

potential scatterer locations. We define Nx = 48 and horizon-
tal grid distance ∆x = 0.5 mm, and Nz = Nt = 256, so
the vertical grid distance can be computed by ∆z = c/(2fs),
where c = 5850 m/s is the ultrasonic velocity in steel.
A ∈ R(NxNt)×(NxNz) is called the measurement matrix or
forward model, whose column A·,j contains the vectorized
and discretized volumetric observation of a single scatterer at
vectorized postion j.

In many NDT applications, prior knowledge of the specimen
geometry is available. Sometimes, this knowledge can be used
to infer regions of interest (ROI) that are of particular relevance
to the inspection task, e.g., because defects in that region are
critical to the quality assessment of the specimen. In such
cases, the spatial sampling can be optimized to prioritize image
quality in these regions, allowing critical defects to be located
and characterized.

In this case, we design a binary subsampling matrix S ∈
RM×Nx to select M locations from Nx, where M < Nx,
which can be physically implemented e.g. by a positioner
system. The selection matrix S consists of M one-hot rows
[s1 s2 . . . sM ]T, and each row contains Nx elements, for
example the m-th row sm = [sm,1 sm,2 . . . sm,Nx

]. Then
the subsampled data ys ∈ RMNt can be calculated:

ys = (S⊗ I)y = (S⊗ I)(Ax+ n) (3)

where ⊗ denotes the Kronecker product, and I ∈ RNt×Nt is
an identity matrix.

After acquisition, the Synthetic Aperture Focusing Tech-
nique (SAFT) [10] can be used to produce a B-mode im-
age. Alternatively, a Sparse Signal Recovery (SSR) algorithm
such as the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [11] can be used to obtain a high-resolution recon-
structed image. In this paper, we take advantage of the Learned
ISTA (LISTA) [12] [13] to execute the SSR of ys because
LISTA is superior to conventional FISTA in several aspects.
Firstly, LISTA has a faster computation speed; secondly,
LISTA could have enhanced reconstruction capabilities.

III. OPTIMAL SPATIAL SUBSAMPLING

A. Gumbel-Softmax Reparameterization

To construct the matrix S, we determine the support of
each row sm, which can be thought of as a sample from
a categorical distribution. We assume that sm follows a
categorical distribution, sm ∼ Cat(Nx,θm), where each
element sm,i corresponds to an unnormalised probability θm,i

(
∑Nx

i=1 θm,i ̸= 1). Essentially, θm,i represents the probability
that sensor location i will be the mth selected location.

We consider using neural networks to sample categorical
variables; however, networks with discrete variables are diffi-
cult to train because the gradient backpropagation algorithm
cannot be applied to non-differentiable layers. Therefore,
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we leverage the Gumbel-Softmax reparameterization trick to
replace non-differentiable categorical samples with a differ-
entiable approximation during training [14] [15]. The unnor-
malized log-probabilities (logits) are conventionally computed
first, allowing the unconstrained optimization of log(θm). The
critical step is to add a standard Gumbel noise vector to the
logits, with gm ∼ Gumbel(0, 1), and yielding noisy logits
um = log(θm)+gm. Then the gradient estimation will depend
on the realization of the Gumbel noise [16].

Before drawing hard samples from um, we apply a softmax
operation to obtain soft samples zm, whose i-th element is
computed by:

zm,i =
exp((log(θm,i) + gm,i)/τ)∑Nx

j=1 exp((log(θm,j) + gm,j)/τ)
(4)

where the softmax temperature τ controls the sampling results
between one-hot and uniform. Next, we calculate the hard
samples sm by sm = argmax(zm). Each row sm is derived
individually in the same way individually, and the rows are
concatenated to form the selection matrix S.

As for gradient estimation, we use the continuous approx-
imation by approximating ∇θs = ∇θz, which is called the
Straight-Through (ST) Gumbel Estimator [16]. In summary,
by means of the Gumbel-Softmax reparameterisation trick,
we can integrate the sampling mechanism for categorical
variables into neural networks and train them with standard
backpropagation.

B. Algorithm Description and Network Architecture

Since the gradient backpropagation has already been solved,
we can complete the DPS algorithm by introducing the loss
function. As explained in section I, the loss function can be
determined based on the beam pattern, the B-mode image,
or the reconstructed image. Therefore, we are interested in
finding an optimal selection matrix S that leads to the best-
reconstructed image quality, i.e. minimizes the reconstruction
error:

L(S) = argmin
S

∥LISTA(ys)− x∥22 (5)

The neural network consists of two main parts, the pre-
trained LISTA for signal recovery, and the Gumbel-Softmax
layer for the subsampling matrix. Considering (2) as an
example sparse recovery model, the basic ISTA is introduced
in Algorithm 1. We rewrite the single ISTA iteration into
xi+1 = hµλ(Wxi+Vy) by substituting W = I−µATA and
V = µAT, where W and V can be represented by weights of
two separate linear layers. Thus, a LISTA network, as shown
in Fig. 2, can be built by replacing the iterations in ISTA
with linear layers of a Deep Neural Network (DNN). It is
worth noting that the number of layers in a LISTA network
can be significantly smaller than the number of iterations in
an ISTA/FISTA. For this reason, the LISTA network used in
this study is limited to a 20-layer network.

Regarding the Gumbel-Softmax layer, we should first clarify
the structure of the selection matrix S. In a simple case, it is
preferred not to repeat the same channel in the subsampling

Algorithm 1 Iterative Shrinkage-Thresholding Algorithm
Optimization target: argminx ∥Ax− y∥22 + λ∥x∥1

1: Initialization: x1 = 0, L = Largest singular value of
2ATA, step size µ = 1

L , λ = 0.1 · max(ATy), I =
Identity matrix.

2: Soft thresholding function:

hµλ(x) =


x− µλ, x > µλ

x+ µλ, x < −µλ

0, else
3: for i = 1 to NIteration do
4: xi+1 = hµλ((I− µATA)xi + µATy)
5: end for

Output: Recovered signal x̂

Fig. 2. Deep Neural Network (DNN) architecture of LISTA

design. This means that each column of S has at most one
non-zero element. The usual solution to deal with the matrix
is to determine each row separately, and add a penalty term to
the loss function. In this case, each row requires at least one
layer for representation, but more layers make learning more
expensive. To simplify the network architecture, the structure
of the selection matrix can be exploited to work instead with
the vector s̃ ∈ RNx by computing its i-th element as the
sum of the i-th column of S. This allows us to optimize the
probabilities of M elements in a single vector simultaneously,
rather than optimizing each row separately. Next, we replace
the matrix multiplication in (3) with an elementwise product
to calculate the subsampled data:

ys = (s̃⊗ 1Nt
)⊙ y (6)

where 1Nt
= [1 1 . . . 1]T ∈ RNt is a vector of ones. Writing

the problem in this way not only allows us to apply a single
Gumbel-Softmax layer, but also avoids an additional constraint
term in the loss function.

The Fig. 3 is an illustration of the complete network archi-
tecture, combining the Gumbel softmax layer and the LISTA
network. We assign the categorical probabilities θ to the biases
of a linear layer and set the weights to be zero. Thus, the biases
are the only trainable parameters. The reconstruction error is
computed by connecting the output sampling vector to the pre-
trained LISTA. The detailed computations are explained in the
pseudocode Algorithm 2.

C. Data Generation Strategy

We divided the whole specimen map into 16 ROIs indexed
by integers {1, . . . , 16} as shown in Fig. 1. According to
our prior knowledge, we want to localize and estimate the
amplitudes of critical flaws in a particular ROI represented by
the sparse vector x from (2) and (3). The spatial subsampling
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Fig. 3. The training network architecture of Deep Probabilistic Subsampling
design. The categorical probability vector θ is represented by biases of a
linear layer with Nx inputs and outputs. The pre-trained LISTA network
contains 20 layers. Gradient backpropagation is accomplished through the ST
Gumbel estimator. Detailed steps in the ellipsis are explained in the following
Algorithm 2.

Algorithm 2 Deep Probabilistic Subsampling
Input: Vectorized specimen map x and randomly generated

θ ∈ RNx

1: Initialization: M = 24, Nx = 48, Nz = Nt =
256, fc = 4 MHz, fs = 60 MHz, c = 5850 m/s,∆x =
0.5 mm,∆z = c/(2fs), τ = 1
Batch size=5000, NEpochs = 20, step size=10−4

2: Calculate fully sampled measurement y by (2)
3: for i = 1 to NEpochs do
4: Generate i.i.d. Gumbel noise gi ∈ RNx

5: Calculate noisy logits: ui = log θ + gi

6: Calculate soft samples (4): zi = softmax(ui)
7: Calculate hard samples s̃i
8: Calculate subsampled data ys by (6)
9: Calculate loss: Li = ∥LISTA(ys)− x∥22

10: Compute gradient of the loss
11: Use SGD optimizer to update θ
12: end for
Output: The selection vector s̃

algorithm should ensure a high-quality reconstructed image if
the defects are mainly located in the predefined ROI. In this
case, an adatpted data generation strategy aims to improve the
sensitivity to detect these critical defects. We assume that the
distribution of the point scatterers over the map follows a non-
uniform Probability Mass Function (PMF), and that the point
scatterers appear with higher probability in a ROI. One can
choose how to formulate such a PMF, and Table I shows an
example used in our case.

TABLE I
NON-UNIFORM PROBABILITY MASS FUNCTION

Region of Interest Index
10 11 6 7 others

Probability Mass 80% 4% 2% 2% 1%

The specific strategy is described as follows. We generate
NTraining = 1, 000, 000 training data. The number of point
scatterers in each specimen map x follows the discrete uni-
form distribution U{1, 2, 3, 4, 5}. In addition, the scattering
amplitude of each scatterer is sampled from the Gaussian
distribution N (15, 3). The code is implemented in PyTorch
and runs on an NVIDIA A100 GPU node.

IV. EVALUATION

The DPS algorithm has successfully selected M = 24
optimal sensor locations from Nx = 48. We also include
fully sampled and uniformly subsampled grids for comparison,
since the fully sampled measurement serves as a baseline
reference and the uniform subsampling is the easiest way to
implement in simulation or practice. The sensor placement for
the three designs above is illustrated in Figure 4.

(a)

(c)

Sensor Placement

1 8 16 24 32 40 48

(b)

Fig. 4. (a). 48 fully sampled grid; (b). 24 uniformly subsampled grid; (c).
24 DPS grid. The three designs are on the same grid, and only the selection
changes.

Following the same strategy, we generate an evaluation
dataset of NEvaluation = 1000 data. We then collect the
measurement data using the three methods above. To illustrate
that the subsampled signal via DPS also works for other SSR
algorithms, we use FISTA instead of LISTA in the evaluation.
The three procedures are called Full+FISTA, Uni+FISTA
and DPS+FISTA. For further quantitative assessment, we
introduce two other metrics, Total Squared Error (TSE) and
Contrast-to-Noise Ratio (CNR), for the reconstructed signal.
The two metrics are reasonable since TSE is related to the
signal amplitude and CNR depends on the correctness of the
scatterer locations.

A. Total Squared Error (TSE)

The Total Squared Error (TSE) of the reconstructed signal
is computed by:

TSE = ∥x̂Reconstruction − xGroundtruth∥22 (7)

To visualise the comparison in a simple way, we compute
the Cumulative Density Function (CDF) of the NEvaluation

TSEs for the three cases. As shown in Fig. 5, the Uni+FISTA
has significantly higher errors and the DPS+FISTA is very
close to the Full+FISTA. In terms of reconstruction error, DPS
has been shown to be superior to uniform subsampling and
slightly inferior to fully sampling.

B. Contrast-to-Noise Ratio (CNR)

The Contrast-to-Noise Ratio (CNR) is defined as:

CNR =
|µi − µo|√
σ2
i + σ2

o

(8)
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Fig. 5. CDF of TSE for Full+FISTA, Uni+FISTA and DPS+FISTA. A higher
and shorter curve means that the majority of results have lower TSE and
therefore indicate better performance.

Fig. 6. CDF of CNR for Full+FISTA, Uni+FISTA and DPS+FISTA. A lower
and longer curve implies that the majority of results have a higher CNR,
indicating better performance.

where µ and σ are the expected value and the variance of the
signal power, respectively [17]. The subscripts i and o denote
inside and outside the target region. Here, the target region is
the true location of each point scatterer.

Observing the following CDF curves versus CNR in Fig. 6,
the image quality of Uni+FISTA is obviously worse than the
others. Then, from a CNR perspective, DPS has been proven
to significantly outperform uniform subsampling and approach
fully sampling.

V. CONCLUSION

This paper demonstrates a model-based data-driven ap-
proach within the DPS framework that is able to optimize
the subsampling pattern in the field of ultrasound NDT. We
contribute to the formulation of the optimal sensor place-
ment problem in single-channel synthetic aperture imaging
by constructing an adequate signal model and building an
adapted neural network architecture. Meanwhile, we manage

to reduce the dimensionality of the desired selection matrix so
that the target becomes a vector, which also circumvents an
additional penalty term in the cost function, thus speeding up
the learning process. For performance evaluation, we assess
the TSE and CNR of the reconstructed image obtained via
FISTA. Simulations show that DPS significantly outperforms
uniformly spatial subsampling and approaches fully sampling.
It is worth noting that the value of M is closely linked to
the number of flaws and is determined by prior knowledge.
Furthermore, our proposed architecture has the potential to be
extended to adaptive sensing methods, which can intelligently
select the subsequent optimal sensor placement or phased array
channel based on previously obtained information during the
measurement process.
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