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Abstract—In this study the problem of Federated Learning
(FL) is explored under a new perspective by utilizing the Deep
Equilibrium (DEQ) models instead of conventional deep learning
networks. We claim that incorporating DEQ models into the
federated learning framework naturally addresses several open
problems in FL, such as the communication overhead due to the
sharing large models and the ability to incorporate heterogeneous
edge devices with significantly different computation capabilities.
Additionally, a weighted average fusion rule is proposed at the
server-side of the FL framework to account for the different
qualities of models from heterogeneous edge devices. To the best
of our knowledge, this study is the first to establish a connection
between DEQ models and federated learning, contributing to
the development of an efficient and effective FL framework.
Finally, promising initial experimental results are presented,
demonstrating the potential of this approach in addressing
challenges of FL.

Index Terms—deep equilibrium models, federated learning,
fixed point computation, communication efficiency, implicit layers

I. INTRODUCTION

Federated learning (FL) has emerged as a promising ap-
proach for privacy-preserving deep learning by distributing
both data collection and model training to the edge. In FL,
a group of edge devices, e.g., IoT devices, collaboratively op-
timize deep learning models without sharing any information
about their data. Instead of sending their data, the clients train
their models locally and periodically send model updates to a
central server for aggregation [1]. In real-world applications
FL encounters two significant challenges, namely, the commu-
nication burden between the server and the edge devices and
the heterogeneity of the devices in terms of computational
and power resources [2]–[4]. Recent studies in federated
learning have disregarded these two significant limitations [5],
utilizing large homogeneous deep neural networks. However,
in practical IoT settings, the devices are characterized by
limited computational and communication resources, which
force them to train smaller and computationally lighter neural
networks, thus affecting heavily their performance [4].

To increase communication efficiency in federated learning,
compression schemes, e.g., sparsification [6], quantization [7]
and client selection [8], have been widely explored. However,
these approaches may result in loss of accuracy and introduce
bias towards certain devices. Also, focusing on the hardware
heterogeneity of the devices, one straightforward approach [9]
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is to select only clients with adequate computational resources,
while disregarding those with limited hardware, which may
still possess valuable information. Alternatively, a model ar-
chitecture could be employed to fit the minimum capabilities
of all clients, but this may constrain the overall representation
ability of the global model [4]. Another direction relies on
deploying different models across clients adapted to their
computational resources. To exchange information over het-
erogeneous models the knowledge distillation technique is
applied to enhance the global model with an ensemble of local
predictions [9]. However, implementing such approaches can
be challenging due to the complex aggregation rules required
on the server or the need for clients to share a public proxy
dataset, which may not be feasible for devices with limited
memory [10], [11].

Contribution: Unlike the existing literature, in this study,
we examine the FL under a different perspective, focusing
on the structure and properties of the model employed by
the edge devices. To be more precise, rather than employing
a conventional deep learning network as referenced in prior
work [3], we utilize the Deep Equilibrium (DEQ) models [12].
We argue that these models are characterized by unique prop-
erties providing solutions to open-problems in FL including
the communication burden between the devices and server and
the computational heterogeneity of the local devices.

Although, the Deep equilibrium models have been explored
in numerous centralized settings [13]–[17], to the best of our
knowledge, our study is the first to investigate a connection be-
tween DEQ models and federated learning. More specifically,
it is shown here that expressing the entire architecture of a
deep learning model as an equilibrium (fixed-point) computa-
tion of a single layer or unit (e.g., a residual block) results in an
efficient infinite-depth neural network that can offer substantial
benefits to federated learning. This compressed representation
requires notably less memory, thus enabling efficient commu-
nication of model updates between the server and the devices,
while achieving competitive performance. Furthermore, the
complexity of the DEQ model can adapt dynamically based
on the edge devices’ computational capabilities by adjusting
the number of fixed point iterations required to compute
the corresponding equilibrium point. Finally, we propose a
novel, weighted average fusion rule that takes into account
heterogeneous edge devices that employ different numbers
of fixed point iterations, thereby utilizing this information
effectively. Note that our proposed method is applicable to
any federated learning algorithm.
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II. PRELIMINARIES- DEEP EQUILIBRIUM (DEQ) MODELS

The DEQ model is inspired by the observation that a typical
k-layer neural network (NN) (with an input-skip connection)
[13] can be formulated as follows

zi+1 = σ(Wizi + Uix+ bi), i = 1, ·, k − 1 (1)

where Wi,Ui denote the weight matrices, bi is the bias term of
the i−th layer, σ()̇ corresponds to the activation function, and
x is the input. Under the weight-tying practice [12], Wi,Ui

and bi of each layer can be replaced by the same W,U and
b, thus deriving a weight-tied deep network as follows

zi+1 = σ(Wzi + Ux+ b), i = 1, .., k − 1 (2)

Note that typically a separate weight Wk and bias term bk
is employed to generate the final output, since the output can
be a different size than the hidden unit. Focusing on the key
iteration in (2), the study in [12] recognised that if we apply the
transformation (2) for an infinite number of times the output
of this transformation should be a fixed point, i.e.,

z⋆ = σ(Wz⋆ + Ux+ b). (3)

In other words, the DEQ models aim to estimate the fixed point
z⋆ where any further application of transformation (2) would
not alter its value. Note that the above solution corresponds
to an infinite-depth network. In light of this, a DEQ model is
defined as a fixed point function fθ(z, x) = σ(Wz+Ux+ b),
which obeys the following relation

z⋆ = fθ(z
⋆, x). (4)

where θ denotes the parameters of the model.

III. PROPOSED METHOD

A. Federated Deep Equilibrium Learning

To mathematically formulate the considered federated deep
equilibrium learning problem, we define a set of N edge
devices, where each device n ∈ N = {1, 2, . . . , N} contains a
local private dataset, denoted as Dn = {xi,n, yi,n}pn

i=1, where
xi
n is the input, and yin is the corresponding label. Given Dn,

each device n aims to train a local DEQ model, whose weights
are denoted as θn. This can be achieved by minimizing a local
objective gn(θ;Dn) that utilizes some loss function, denoted
as L(.). Since, an infinite depth neural network is considered,
this minimization process requires the solution of several fixed
point problems, needed for the calculation of the output of the
DEQ model. In particular, the local objective of device n is

gn(θn;Dn) =
1

pn

pn∑
i=1

L(z⋆i , yi,n) , (5)

where z⋆i is the solution of the fixed point equation z⋆i =
fθ(z

⋆
i , xi,n), defined in relation (4) and denotes the output of

the DEQ model when the input xi
n is applied. Thus, the goal

of edge device n is to obtain the local DEQ model θn that
minimizes the objective in (5).

Under the FL framework, the devices aim to collaboratively
train a global DEQ model, say θg , in a manner orchestrated by

a central server. Particularly, the FL minimizes the aggregation
of the local objectives and entails a common output for all
devices using the global model. The objective of FL is

G(θg) =

N∑
n=1

wngn(θn;Dn) (6)

where wn denote some weight coefficients.

B. Edge device side-local update: forward and backward pass

The core component of the DEQ model is the transformation
fθ(·) in (3) that is driven to equilibrium. Given this transfor-
mation, each device faces the following two challenges during
its training/inference procedures. First, given an input xi,n a
fixed point of fθ(·, xi,n) is required to be estimated efficiently
during the forward pass. Second, given its dataset Dn, each
edge device needs to minimize its local objective (5) to
efficiently update the weights of the local DEQ model. Without
loss of generality, to simplify the notations and calculations
below, we focus only on the edge device n using only a single
pair of training samples denoted as {x, y}.

1) Forward pass - Calculating fixed points: During the
training and testing procedures of edge device n, a large
number of fixed point iterations needs to be computed based
on the transformation map of DEQ model in (4) to estimate
the fixed point z⋆ = fθ(z

⋆, x).
A simple yet time-consuming approach to calculate the fixed

point is to apply the following recursive scheme, i.e., z(k+1) =
fθ(z

(k), x) until z(k+1) and z(k) are sufficiently close to each
other. In view of this, we employ the Anderson acceleration
approach [18], thus accelerating significantly the calculation of
the fixed-point. Specifically, the Anderson acceleration method
employs m previous fixed point estimates to compute the next
fixed point estimate, thus forming the following rule

z(k+1) = (1− β)

m−1∑
i=0

αiz
(k−i) + β

m−1∑
i=0

αifθ(z
(k−i), x), (7)

for β > 0. The vector α ∈ Rm is computed via

argmin
α

∥Qα∥22 , s.t. 1Tα = 1 (8)

where Q = [fθ(z
k, x)− z(k), . . . , fθ(z

k−m+1, x)− z(k−m+1)]
is a matrix, which contains m past residuals.

2) Backward pass - Calculating the Gradient: The second
challenge that devices encounter during their training process
is the computation of backpropagation. The objective is to
train their local DEQ model without the need to backpropagate
through a significant number of fixed-point iterations.

Let z⋆ = fθ(z
⋆, x) be the fixed point estimated during

the forward pass given the input x from the local dataset of
device n and l(z⋆) = L(z⋆, y) be a loss function using only an
example-target y. The gradient with respect to the local DEQ
model, denoted as θ is

∂l

∂θ
=

(
∂z⋆T

∂θ

)(
∂l

∂z⋆

)
, (9)

where the first factor is the Jacobian of z⋆ w.r.t. θ and
the second factor is the gradient of the loss function. To

1874



avoid backpropagating through a large number of fixed point
iterations, the implicit backpropagation [12] is performed to
estimate the Jacobian of z⋆ w.r.t. θ. To this end, we implic-
itly differentiate both parts of fixed point equation (4). i.e.,
z⋆ = fθ(z

⋆, x) and we solve for ∂z⋆

∂θ , thus deriving an explicit
expression for the Jacobian

∂z⋆

∂θ
=

(
I − fθ(z

⋆, y)

∂z⋆

)−1
fθ(z

⋆, y)

∂θ
(10)

Using relation (10), equation (9) is reformulated as follows

∂l

∂θ
=

fθ(z
⋆, x)T

∂θ

(
I − fθ(z

⋆, x)

∂z⋆

)−T
∂l

∂z⋆
. (11)

Thus, we need to compute only a computationally efficient
Jacobian-vector product, as shown in equation (11) in order
to obtain the gradient of the loss in (9). Following [17], [19], to
calculate this Jacobian-vector product, the vector γ is defined

γ =

(
I − fθ(z

⋆, y)

∂z⋆

)−T
∂l

∂z⋆
⇒ γ =

(
fθ(g

⋆, y)

∂z⋆

)T

γ +
∂l

∂z⋆
.

(12)
Note that expression (12) also defines a fixed point equation.
Hence, solving this fixed point equation and computing the
fixed point γ⋆, the gradient in (11) can be written as

∂l

∂θ
=

fθ(z
⋆, x)T

∂θ
γ⋆. (13)

A great advantage is that the Jacobian-vector product in
(12) can be efficiently computed by conventional automatic
differentiation tools with constant memory [12].

C. Advantages (Properties) of the DEQ models in FL

Communication efficiency: One of the most important
benefits that stems from the adoption of a DEQ neural network
model in the FL framework, is the significant reduction in the
number of model parameters that need to be transmitted. The
DEQ model utilized by edge devices can be interpreted as a
compressed version of a K-layer deep network in the sense
that it only employs a single layer as its central component.
This layer defines the transformation function fθ(·) that drives
the system towards equilibrium. In other words, if we consider
that the transformation function fθ(·) is defined in terms of
M parameters, then the total number of parameters required
for the transmission of a DEQ model is somewhat more than
M , if we also consider the parameters of the output layer. On
the other hand, if a K-layer deep neural network model was
employed in the federated learning framework, then each layer
typically employs a number of parameters of the order of M
per layer and the total number of parameters required for the
transmission of one model would be close to K · M , i.e., a
multiple of what is required by adopting a DEQ model.

Reduced memory requirements: An obvious benefit that
results from the adoption of DEQ neural network models
in the federated learning framework, is that both the clients
as well as the parameter server need a significantly smaller
amount of memory, to store and process the models. Thus,
this enables the use of devices with smaller costs. If we take
into account that some models have several millions (or even

billions) of parameters, we realize the importance of such a
memory saving.

Support for heterogeneous devices: Another important
advantage of the use of DEQ models in the FL framework
is that it naturally enables the incorporation of edge devices
with significantly different processing capabilities. In order to
explain this property, it is important to note that a DEQ model
derived by following the procedure in Section III-B corre-
sponds to an infinite depth neural network, if the algorithm
used to compute the fixed point performs enough iterations to
achieve convergence. Likewise, when the iterative algorithm
employed by the devices to compute the fixed point of the
transformation fθ(·) (see eq. 4) performs a limited number
of iterations, this results into a model that approximates the
ideal infinite depth neural network. Thus, different devices
can perform different numbers of iterations, according to
their computational capabilities. Devices with more processing
power can perform iterations until convergence is reached.
However, less powerful clients can perform fewer iterations,
at the cost of reaching approximate, but valid, models. In any
case, the DEQ models derived by all heterogeneous devices
can be aggregated easily at the server side, since they are all
defined in terms of the same transformation fθ(·).

D. Server-side - fusion rule

On the server-side, considering that the DEQ models sent
by the devices have been derived by heterogeneous edge
devices that each may employ a different number of fixed
point iterations, a weighted average fusion rule is proposed that
effectively utilizes this information. In more detail, at every
communication round t, the server employs the following
fusion rule, defined by

θ(t)g =
1∑N

n=1 kn

N∑
n=1

knθ
(t)
n , (14)

where θ
(t)
g denotes the global model, θ(t)n is the DEQ model

sent to the server by client n and kn denotes the number of
fixed point iterations performed by client n.

IV. EXPERIMENTAL PART

In this section, we evaluate the effectiveness of the proposed
Federated Deep equilibrium learning approach and compare it
with the corresponding federated learning approaches using
traditional deep learning models in different scenarios. The
evaluation is conducted from two perspectives: 1) Communi-
cation efficiency and accuracy, and 2) Heterogeneity of edge
devices in terms of their computational capabilities.

A. Implementation details

Dataset and settings: We utilize the well-known CIFAR10,
adopting similar training/testing splits as previous studies e.g.,
[20] and exploring two scenarios, i.e, 1) an IID data case and
2) a non IID data case. In the non IID data setting, the label
ratios follow the Dirichlet distribution, in which the Dirichlet
parameter was set to 0.25 [20]. Since, the focus of this study
is to connect the DEQ models with the federated learning, for
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CIFAR-10 I.I.D. scenario
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CIFAR-10 non I.I.D. scenario
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Fig. 1: The accuracy of the proposed Federated Deep Equi-
librium Learning approach, which utilizes DEQ models with
several residual blocks, is compared to Federated Learning
(FL) that employs the ResNet model, for both I.I.D. and non-
I.I.D. scenarios.

all experiments we employed the FedAvg algorithm with a
network of N = 15 devices.
Compared deep learning networks: Regarding the compared
methods, we consider two federated learning methods based on
the FedAvg algorithm that employ two deep learning models,
i.e., 1) a ResNet network and 2) a lighter CNN model. The
ResNet model comprises five residual blocks and a fully
connected (FC) layer with ten neurons as outputs for ten
classes. The CNN model consists of L convolutional layers
followed by a FC layer, where the value of the parameter L
varies from 4 to 10 throughout the experiments.
The choice of DEQ model (transformation fθ(.)): The core
component of the DEQ models is the transformation fθ(.). In
this study, we explored two DEQ models comprising transfor-
mations based on the previously mentioned ResNet and CNN
networks. In the first case, since the ResNet consists of residual
blocks, we considered a residual block as a transformation fθ:

fθ(z, x) = B(σ(z + B(x+ W2 ∗ B(σ(W1 ∗ z))))))

where B represents the Group normalization and σ is the
ReLU. Note that the DEQ model may comprise of additional
residual blocks to achieve a balance between accuracy and
number of parameters. In the second case, the transformation
fθ of the DEQ model comprises of a convolutional layer (or
more). After finding the equilibrium point, the output of the
above DEQ models is followed by a FC layer.
Parameters: Each federated learning method utilized 90 com-
munication rounds between the server and the edge devices.
Concerning the local training process of the edge devices, we
employed 5 epochs with batch size equal to 32 using the SGD
as optimizer. During the training/testing process we used 10
fixed point iterations for the forward and backward passes.

B. Results - Communication efficiency

Regarding the ResNet architecture, in Figure 1, we com-
pared the FL-ResNet method with the proposed Federated
Deep Equilibrium Learning approach, which utilizes a DEQ
model with varying numbers of residual blocks (one, two,
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Fig. 2: The convergence of the proposed Federated Deep Equi-
librium Learning approach, which utilizes DEQ models with
several residual blocks, is compared to Federated Learning
(FL) that employs the ResNet model, for both I.I.D. and non-
I.I.D. scenarios.

or three) denoted as FL-DEQ-1-residual-block, FL-DEQ-2-
residual-blocks, and FL-DEQ-3-residual-blocks, respectively.
The results validate that the connection of DEQ models with
federated learning offers several advantages. In more detail,
utilizing only a single residual block in transformation fθ i.e.,
the method FL-DEQ-1-residual-block, we are able to achieve
more than 84% reduction in the parameters of the local
models with negligible performance loss (less than 3.16%)
for both the I.I.D. and non I.I.D. scenarios as compared to the
FL-ResNet approach. Interestingly, with a slight increase in
the complexity of the DEQ model (using 3 residual blocks),
the FL-DEQ-3-residual-blocks outperforms the FL-ResNet
method, while requiring 56% less parameters. Similar re-
sults were obtained for the CNN architecture. Specifically, in
Figure 3, the Federated Deep Learning method that uses a
transformation function with 4 convolutional layers provides
a significant reduction in the number of parameters (more
than 66.5%) while achieving better performance than the all
FL-CNN cases. Additionally, from Figure 2, the three consid-
ered federated deep equilibrium learning methods demonstrate
faster convergence rates requiring less communication rounds
to achieve a satisfactory performance accuracy compared to
the FL-ResNet approach. Overall, the proposed FL approach
provides significant communication gains in terms of both the
number of parameters that need to be exchanged between
devices and the server, and the number of communication
rounds required.

C. Results - Heterogeneous Devices

In this experiment, we considered a scenario in which
40% of the participating edge devices were characterized by
limited computational resources, and therefore performed only
3 fixed point iterations during their local training update. The
remaining devices, with more powerful hardware, performed
10 fixed point iterations. We evaluated the performance of the
FL-DEQ-2-residual-blocks method in two cases: (1) where
all edge devices performed 10 fixed point iterations (homo-
geneous scenario), and (2) where the number of fixed point
iterations varied depending on the computational resources
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CIFAR-10 I.I.D. scenario
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CIFAR-10 non I.I.D. scenario

2(15K param)

4(30K param)

6(50K param)

8(70K param)

10(90K param)

Num of CNN layers

63

65

67

69

71

73

75

77

79

T
es

t 
A

cc
u

ra
cy

 %

FL-DEQ-cnn
FL-cnn

(b)

Fig. 3: The proposed Federated Deep Equilibrium Learning
approach, which utilizes DEQ models with 2 to 10 convolu-
tional layers, has been evaluated for its accuracy in comparison
to Federated Learning (FL) that employs CNN models with
several CNN layers, for both I.I.D. and non-I.I.D. scenarios.
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Fig. 4: The FL-DEQ-2-residual-blocks method is evaluated in
a heterogeneous scenario, demonstrating resilience to varying
computational resources of edge devices without sacrificing
convergence speed or accuracy compared to the homogeneous
scenario.

of the edge devices (heterogeneous scenario). The results,
shown in Figure (4), demonstrate that the proposed approach
is resilient to heterogeneity in the hardware capabilities of
the edge devices. Specifically, the FL-DEQ-2-residual-blocks
method achieved similar accuracy in both the homogeneous
and heterogeneous scenarios, despite the fact that some de-
vices performed fewer fixed point iterations than others. This
suggests that the proposed approach can effectively leverage
the varying computational resources of edge devices, without
sacrificing accuracy or convergence speed. Note that similar
results were obtained by utilizing the other proposed schemes
but they have been omitted due to space limitations.

V. CONCLUSIONS

This study presents a novel approach that employs Deep
Equilibrium models to address several challenges in federated
learning. In particular, it was shown that using DEQ models
in the context of FL can effectively handle the communica-
tion overhead associated with sharing large models and the
computational heterogeneity of edge devices. Promising initial
experimental results were presented, indicating the potential

of this approach in addressing the challenges of FL. Further
experimental work is needed to fully explore the capabilities
and limitations of the proposed approach, including its perfor-
mance on different datasets and neural network architectures.
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