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Abstract—In non-Bayesian social learning, the agents of a
network form their belief about a hypothesis of interest by
performing individual Bayesian updates, which are then shared
with their neighbors and aggregated according to a suitable
pooling rule. This social learning scheme is called non-Bayesian
because the pooling rule cannot be Bayesian owing to the
limitations arising from the distributed learning setting. However,
traditional non-Bayesian learning relies on using a local Bayesian
update rule. In this work, we move away from this assumption
and consider instead non-Bayesian learning with non-Bayesian
updates. Taking as a benchmark the optimal centralized posterior,
we show that this modified strategy can outperform traditional
social learning and that, intriguingly, it can attain the same error
exponent as the optimal scheme under two opposite scenarios:
when the data are independent across the agents and when there
are agents with highly dependent data.

Index Terms—Social learning, Bayesian update, Large devia-
tions, Opinion formation, Distributed decision-making.

I. INTRODUCTION AND RELATED WORK

The learning problem addressed in this work concerns the
formation of opinions about some hypothesis of interest θ
belonging to a discrete finite set Θ, based on the observation
of a stream of data [1], [2]. Data are observed by a group
of spatially dispersed agents that are allowed to exchange
their beliefs according to a communication graph dictated by
a certain network topology [3]. In the ideal case where i) all
data are available to all agents and ii) the joint distribution of
the data is available, the solution is well known. Specifically,
the optimal belief is the posterior probability computed by
means of Bayes’ rule. Once this posterior is evaluated, one can
then choose the hypothesis that results from the maximum-
a-posteriori (MAP) rule, which is known to minimize the
probability of erroneous decisions [4].

In practice, the aforementioned two conditions are seldom
verified. Often, data are not only dispersed, but also statis-
tically dependent across agents, and there is no knowledge
about their joint distribution. Each agent has access to only the
marginal distribution characterizing its own data. Furthermore,
since communication is permitted only between neighbors,
at each communication round the individual agents would
have access to information arising from only a portion of
the overall distribution, even under independence. Under these
limitations, determining the optimal fully Bayesian solution is
not feasible [5], thus motivating the emergence of the non-
Bayesian social learning paradigm [6]–[10].

This work was supported in part by SNSF grant 205121-184999.

We will denote by ξk,i ∈ Rdk (we use bold font for random
quantities) the streaming data arriving at agent k = 1, 2, . . . , N
at time i ∈ N. Note that the data can have different dimensions
dk across the agents. The goal of each agent k is to construct
a belief vector µk,i at each time i, namely, a probability vector
where µk,i(θ) is the probability assigned to hypothesis θ, and
satisfying

∑
θ∈Θ µk,i(θ) = 1. The data {ξk,i}Nk=1 are assumed

independent and identically distributed over time. We assume
each agent k has only access to a local likelihood Lk(ξ|θ),
which is the marginal probability (density or mass) function of
ξk,i given the hypothesis θ. Accordingly, if the true underlying
hypothesis is denoted by θ0, then the true marginal distribution
governing the data ξk,i is Lk(ξ|θ0).

Non-Bayesian social learning is composed of the follow-
ing two steps. First, a self-learning step, where each agent
constructs an intermediate belief vector ψk,i by updating the
previous-lag belief vector µk,i−1 with the fresh information
ξk,i. In this first step, social learning is locally Bayesian, since
it implements the Bayesian update rule:

ψk,i(θ) ∝ µk,i−1(θ)Lk(ξk,i|θ), (1)

where the symbol ∝ denotes the proportionality constant that
is necessary to make ψk,i a probability vector.

Subsequently, all agents share with their neighbors the
intermediate beliefs, and there is a cooperation step, where
each agent constructs the updated belief µk,i by combining
the beliefs received from the neighbors. Different pooling rules
have been considered in the literature [6]–[11]. One strategy is
geometric averaging, which is optimal under the minimization
of a suitable weighted Kullback-Leibler divergence [12], and
under appropriate behavioral constraints [13]. This pooling
rule is given by:

µk,i(θ) ∝
N∏
ℓ=1

ψaℓk

k,i (θ), (2)

where the combination weights aℓk are convex, i.e., they are
nonnegative and satisfy

∑N
ℓ=1 aℓk = 1. Storing these weights

into the combination matrix A = [aℓk], we see that A is
left stochastic and its support graph describes the effective
communication topology between the agents.

It was established in previous works that the non-Bayesian
social learning strategy learns consistently the truth (meaning
that the belief mass placed on the true underlying hypothesis
converges almost surely to 1 as i → ∞) under mild regularity

1878ISBN: 978-9-4645-9360-0 EUSIPCO 2023



assumptions on the likelihood functions and over strongly
connected networks [9], [10], [14].

However, less attention has been paid in earlier works to the
comparison of the opinions resulting from social learning with
those arising from the ideal Bayesian posterior. The recent
work [15] addresses the problem of tracking the Bayesian
posterior under a hidden-Markov-model (HMM) where the
underlying hypothesis varies at each social learning round.
Here, in this manuscript, we address instead the comparison
with the Bayesian posterior in terms of error probabilities in
the opinion formation process, and under the standard setting
adopted in social learning where the hypothesis is fixed over
time. We provide the following main contributions.

First, we propose to replace the Bayesian update (1) with
the following non-Bayesian update:

ψk,i(θ) ∝ µk,i−1(θ)L
γk

k (ξk,i|θ), (3)

which raises the likelihood to a positive number γk. The
resulting strategy will be referred to as non-Bayesian social
learning with non-Bayesian update, and abbreviated as the
NBNB (or NB2) strategy. Note that the NB2 strategy is
equivalent to traditional non-Bayesian learning when we set
γk = 1 for all k = 1, 2, . . . , N . In the context of distributed
Bayesian filtering [15], [16] the idea of raising the likelihood
to some agent-independent value γk = γ was exploited to
track the centralized Bayesian posterior. However, in tracking
the Bayesian posterior an agent-independent value γk = γ can
be helpful only with doubly stochastic matrices, while in terms
of error probabilities, we will see that an agent-independent
value is not helpful. In particular, we will establish useful
connections between agent-dependent values γk and attributes
of the learning problem, such as the network topology and the
dependence structure among the agents.

In [11] other update rules are proposed, whose critical
feature is that the previous-lag belief µk,i−1 is raised to
some positive number. Exponentiating the belief instead of
the likelihood has a fundamentally different goal than the one
considered in this work, namely, it is useful to infuse the social
learning algorithm with adaptation [11].

We establish that the NB2 strategy can outperform tra-
ditional non-Bayesian social learning. In particular, we first
show that, when the data are independent across agents, the
error probability decays exponentially fast to zero as i → ∞,
with an error exponent that is equal to that of the optimal
Bayesian posterior for doubly stochastic combination matrices.
In contrast, traditional social learning achieves a suboptimal
error exponent when the combination matrix is left stochastic
(and not doubly stochastic),1 a setting that plays an important
role in practice, especially over directed graphs, where it
can be difficult to construct a doubly stochastic combination
matrix. In this work we establish that the NB2 strategy is able
to attain the exponent of the optimal Bayesian posterior even

1The superiority of doubly stochastic matrices was shown in [17] in adaptive
social learning, in terms of the error exponent that characterizes the decay of
the error probability as a function of the adaptation parameter. Results for the
standard non-adaptive setting that we address here are missing.

with left stochastic matrices, when each agent knows its own
Perron eigenvector entry.

Second, we examine the case where clusters of agents
feature highly dependent data. For this case, we show that
traditional non-Bayesian learning is suboptimal, whereas the
NB2 strategy can recover the optimal error exponent of the
Bayesian posterior, provided that the clusters are known and
that the likelihoods in each cluster are properly discounted
so that the data in each cluster are counted only once in the
learning process.

In this work we evaluate the performance of the NB2 strat-
egy by resorting to the theory of large deviations [18], [19].
A large-deviations analysis of distributed decision-making
schemes was proposed in [10], [11], [20]–[22], under settings
other than ours. In [20], the focus is on binary hypothesis
testing, identical distribution across agents, and combination
matrices that are doubly stochastic, symmetric, and random.
The characterization in [10] is relative to traditional social
learning. In [11], [21], [22], large-deviations theory was ap-
plied to adaptive learning schemes to characterize the expo-
nential decay of the error probability as a function of the
adaptation parameter [11], which is a problem different from
the one addressed here.

II. ASSUMPTIONS

Assumption 1 (Strongly Connected Network). Given any
pair of nodes (ℓ, k), paths with nonzero weights exist in both
directions, i.e., from ℓ to k and vice versa (the two paths need
not be the same), and at least one agent k in the entire network
has a positive self-weight (akk > 0). □

Strong connectivity implies that the left stochastic matrix
A is primitive [3], [4]. Then, the Perron-Frobenius theorem
implies the existence of a vector v = [vk], a.k.a. the Perron
eigenvector, which satisfies the following conditions [3]:

Av = v,

N∑
k=1

vk = 1, vk > 0 ∀k. (4)

Assumption 2 (Positive Initial Beliefs). For each k =
1, 2, . . . , N and each θ ∈ Θ, µk,0(θ) > 0. □

It can happen that hypotheses θ0 and θ are indistinguishable
to agent k, i.e., the distributions Lk(ξ|θ0) and Lk(ξ|θ) are the
same. Agents with indistinguishable hypotheses are unable to
learn on their own. In social learning, agents can overcome
local unidentifiability through collaboration. In particular, if
agent k is able to distinguish one hypothesis θ from the true
hypothesis θ0, then we will see that this ability can diffuse
across the network. For this to be possible, we resort to the
standard global identifiability assumption.

Assumption 3 (Global Identifiability). For every pair (θ0, θ)
there exists at least one agent k with distinct distributions
Lk(ξ|θ0) and Lk(ξ|θ). □

Note that identifiability is formulated with reference to any
true hypothesis θ0. This is because we do not know which one
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is the true hypothesis, and in a classification problem we want
to be able to classify any hypothesis.

III. PERFORMANCE ANALYSIS

As an error measure, we evaluate the probability that the
maximum belief is not located at the true hypothesis:

pk,i,θ0 = P[µk,i(θ) ≥ µk,i(θ0), for some θ ̸= θ0]. (5)

A detailed characterization of the error probability is a
formidable task. Thus, we focus on an asymptotic analy-
sis aimed at establishing that the error probability vanishes
exponentially fast as i → ∞. Once exponential decay is
established, a compact descriptor of the learning performance
is provided by the error exponent:

Ek,θ0 ≜ lim
i→∞

− log pk,i,θ0
i

⇔ pk,i,θ0 = exp {−iEk,θ0 + o(i)} ,
(6)

where o(i) is a quantity such that limi→∞ o(i)/i = 0. Note
that in general the exponent depends on the particular agent
and true hypothesis.

Before addressing the exponential characterization of the
error probability, we need to introduce some relevant quan-
tities. First, we introduce the log-moment-generating-function
(LMGF) of the log-likelihood ratio of agent k between hy-
potheses θ0 and θ, with θ ̸= θ0:

Λk,θ0θ(t) ≜ logE exp

{
t log

Lk(ξk,i|θ0)
Lk(ξk,i|θ)

}
. (7)

A random variable playing a fundamental role in our analysis
is the following weighted average:

λi,θ0θ ≜
N∑
ℓ=1

vℓγℓ log
Lℓ(ξℓ,i|θ0)
Lℓ(ξℓ,i|θ)

. (8)

The next theorem will be proved under the assumption that
the data are independent across agents. Since the LMGF is
additive for independent random variables, the LMGF of the
average variable λi,θ0θ is given by:

Λθ0θ(t) ≜ logE exp {tλi,θ0θ} =

N∑
ℓ=1

Λℓ,θ0θ(vℓγℓt). (9)

We also introduce the Fenchel-Legendre transform of Λθ0θ(t):

Λ⋆
θ0θ(x) = sup

t∈R

[
tx− Λθ0θ(t)

]
, (10)

which in the context of large deviations is referred to as the
rate function [18], [19].

Theorem 1 (Error Exponents). Consider Assumptions 1– 3.
Assume that the data are independent across agents and that,
for all θ0, θ, with θ ̸= θ0:

Λθ0θ(t) < ∞, for all t ∈ R. (11)

Then, for the NB2 strategy, the error probabilities pk,i of all
agents vanish as i → ∞ with one and the same error exponent,
which is given by:

Eθ0 ≜ min
θ∈Θ

Λ⋆
θ0θ(0) > 0. (12)

Furthermore, this exponent coincides with the exponent of the
centralized Bayesian posterior if the update parameters are
chosen as:

γk ∝ 1

vk
. (13)

Proof: Due to space limitations, we offer a sketch of
the proof. By unfolding the recursion arising from repeated
application of (3) and (2), we arrive at the equality:

1

i
log

µk,i(θ0)

µk,i(θ)
=

N∑
ℓ=1

1

i

i∑
n=1

[An+1]ℓkγℓ log
Lℓ(ξℓ,n|θ0)
Lℓ(ξℓ,n|θ)

,

(14)
where, for simplicity, we assumed uniform initial beliefs for all
agents (it can be seen that the additional transient term arising
from a non-uniform assignment will not change the claim of
the theorem). Since the data are independent over time and
across agents, the LMGF of the random variable defined on
the LHS of (14) is equal to:

Λi,θ0θ(t) ≜ logE exp

{
t

i
log

µk,i(θ0)

µk,i(θ)

}
=

N∑
ℓ=1

i∑
n=1

Λℓ,θ0θ([A
n+1]ℓkγℓt/i). (15)

If we show that

lim
i→∞

1

i
Λi,θ0θ(it) = Λθ0θ(t), (16)

then we can call upon the Gärtner-Ellis theorem, which implies
the following Large Deviations Principle [18], [19]:

lim
i→∞

logP
[
1

i
log

µℓ,i(θ0)

µℓ,i(θ)
≤ 0

]
=− inf

x≤0
Λ⋆
θ0θ(x)=−Λ⋆

θ0θ(0),

(17)
where the last equality can be proved by exploiting the
convexity properties of Λ⋆

θ0θ
(x). Once we have the exponential

characterization provided by (17), it can be shown by union-
bound arguments that the exponent corresponding to the
probability of error in (5) is given by the worst-case exponent
Eθ0 in (12). It remains to show (16). We can write:

1

i

i∑
n=1

Λℓ,θ0θ([A
n+1]ℓkγℓt) = Λℓ,θ0θ(vℓγℓt)

+
1

i

i∑
n=1

(
Λℓ,θ0θ([A

n+1]ℓkγℓt)− Λℓ,θ0θ(vℓγℓt)
)
. (18)

The first term on the RHS of (18) is the desired one, and hence
it suffices to show that the second term vanishes as i → ∞.
This is true by the convergence of Cesáro means [23], since
the individual summands in this second term vanish in view
of the Perron-Frobenius theorem and the fact that the function
Λℓ,θ0θ is continuous in R thanks to (11). The fact that (13)
yields the exponent of the Bayesian posterior can be checked
similarly. Finally, we observe that we have not proved that
Eθ0 > 0. This property can be shown, with some additional
steps, by starting from the observation that Λ⋆

θ0θ
(x) = 0 if,

and only if, x = Eλi,θ0θ, and that this expectation is positive
in view of global identifiability.
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Likelihood: Lk(ξ|θ)
Agent k θ = 1 θ = 2 θ = 3

1− 3 g1(ξ) g1(ξ) g3(ξ)

4− 6 g1(ξ) g3(ξ) g3(ξ)

7− 10 g1(ξ) g2(ξ) g1(ξ)

TABLE I
IDENTIFIABILITY SETUP FOR THE PROBLEM IN THE LEFT PLOT OF FIG. 1.

To understand the proportionality sign in (13), observe that
scaling γk by a constant amounts to scaling λi,θ0θ by a
constant, which is immaterial in terms of error exponents.
For doubly stochastic matrices (vk = 1/N ), condition (13)
becomes γk ∝ N . This means that, for doubly stochastic
matrices, both the NB2 strategy and traditional social learning
(γk = 1) achieve the exponent of the Bayesian posterior.

The situation changes for left stochastic matrices, for which
the Bayesian error exponent is not achieved in general by
traditional social learning, and is achieved by the NB2 strategy
with the choice in (13). The Perron eigenvector, which is
necessary to apply (13), can be estimated by means of the fol-
lowing distributed consensus protocol [24]. Assume each agent
k is initialized with a certain value wk,0. Let us stack these
values into the N × 1 vector w0 = [w1,0, w2,0, . . . , wN,0]

⊤

and apply recursively the updates wk,i =
∑N

ℓ=1 aℓkwℓ,i−1

for all agents k = 1, 2, . . . , N . In terms of the vectors
wi = [w1,i, w2,i, . . . , wN,i]

⊤ we obtain:

wi = A⊤wi−1 ⇔ wi = (A⊤)iw0
i→∞−→

N∑
ℓ=1

vℓwℓ,0, (19)

with the convergence following from the Perron-Frobenius
theorem. If agent k is initialized with value 1 and all other
agents with 0, all agents converge exponentially fast to vk,
thus learning in a few rounds the kth Perron eigenvector entry.

IV. ILLUSTRATIVE EXAMPLES

In the left plot of Fig. 1 we consider the following problem.
We have a family of Laplace probability density functions with
unit scale parameter and three different means, namely,

gm(ξ) =
1

2
e−|ξ−0.1m|, for m ∈ {1, 2, 3}. (20)

The distributions of the agents are chosen from among these
Laplace densities, in the specific way reported in Table I,
which corresponds to a globally (but not locally) identifiable
problem. We consider the network topology displayed in
Fig. 1, equipped with a left stochastic combination matrix
obtained through the uniform averaging rule [3].

To show a unique error measure in a single plot, we consider
the error probability averaged over all agents and hypotheses:

pi ≜
1

N |Θ|

N∑
k=1

∑
θ0∈Θ

pk,i,θ0 , (21)

whose exponent can be proved to be the worst-case (i.e., the
minimum) Eθ0 across all θ0. The left plot in Fig. 1 shows

the average error probability as a function of time for: i) the
NB2 strategy with optimized choice (13); ii) traditional social
learning (SL); and iii) the centralized Bayesian posterior.
We see that the NB2 strategy outperforms traditional social
learning, and attains the same error exponent as the optimal
Bayesian posterior. We have verified (not shown for space
limitations) that discrepancies across the error probabilities of
different agents can arise, as it must be since it was shown
that in distributed learning we can attain the centralized error
exponent, but we cannot eliminate differences in the error
probabilities of the agents, which are embodied in higher-order
sub-exponential corrections [11].

A. Highly Dependent Data

Theorem 1 assumes that the data are independent across
agents. In order to see the potential benefits of the NB2 strat-
egy also with dependent data, consider the case where there ex-
ist clusters of agents that observe highly correlated data, while
the data are independent across distinct clusters. Assume there
are M clusters, and denote them by C(1),C(2), . . . ,C(M).
The cluster agent k belongs to will be denoted by Ck. For
the limiting case where the observations of different agents in
the same cluster have unit correlation, it is obvious that the
optimal Bayesian rule should consider a single likelihood per
each cluster. In this case, the log-likelihood ratio pertaining to
the ith data samples and to all agents can be written as:

N∑
ℓ=1

1

|Cℓ|
log

Lℓ(ξℓ,i|θ0)
Lℓ(ξℓ,i|θ)

. (22)

To see why relation (22) holds, assume for instance that cluster
C(1) is formed by agents j and ℓ. Then, we have that:

1

|Cj |
log

Lj(ξj,i|θ0)
Lj(ξj,i|θ)

+
1

|Cℓ|
log

Lℓ(ξℓ,i|θ0)
Lℓ(ξℓ,i|θ)

=
1

2
log

Lj(ξj,i|θ0)
Lj(ξj,i|θ)

+
1

2
log

Lℓ(ξℓ,i|θ0)
Lℓ(ξℓ,i|θ)

= log
Lℓ(ξℓ,i|θ0)
Lℓ(ξℓ,i|θ)

,

(23)

where in the last step we used the fact that the data of the
two agents coincide, since they have unit correlation. It can be
shown (the proof is based on arguments similar to Theorem 1,
but is omitted for space limitations) that the error exponent of
the optimal Bayesian posterior for this limiting case can be
achieved by the NB2 strategy with the choice:

γk ∝ 1

vk|Ck|
. (24)

In contrast, traditional non-Bayesian learning neglects the
dependence and simply treats the data in the cluster as if they
were independent. This way, we are giving to the data in the
cluster more relevance than what they would deserve according
to the optimal Bayesian posterior.

The right plot in Fig. 1 shows an example with the following
setting: the data samples of agent 1 come from a unit-scale
Laplace distribution with mean equal to 0.1; the data samples
of all other agents from a Laplace distribution with mean
equal to 0.05, and these agents (from 2 to 10) form a cluster
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Fig. 1. Left. Average error probability (Eq. (21)) as a function of time, for the independent data case and a left stochastic matrix. The network is shown in
the smaller panel. Right. Average error probability as a function of time, for the highly dependent data case and a doubly stochastic matrix. The shaded areas
in the smaller panel represent the clusters of agents. In both plots, we compare the NB2 strategy, traditional social learning, and the Bayesian posterior.

with dependent data. The figure shows two cases: the limiting
case where all data in the cluster are the same (correlation
coefficient ρ = 1), and the more practical case where some
zero-mean Gaussian noise with unit variance is added to each
data sample in order to make them highly correlated but
not equal (ρ = 2/3). We also consider a doubly stochastic
matrix (namely, a Metropolis matrix [3]) to emphasize the
role of dependence rather than of the combination policy.
We see from the right plot in Fig. 1 that the NB2 strategy
significantly outperforms traditional social learning. Notably,
this happens even in the non-limiting scenario. Moreover, in
the non-limiting scenario the NB2 strategy attains the same
error exponent of the Bayesian posterior that assumes perfect
correlation among the data within the same cluster.

V. CONCLUSION

In traditional social learning, before sharing their opinions,
the agents act in an individually-optimal manner by performing
local Bayesian updates. We proposed a new scheme that
employs non-Bayesian updates and that, in some useful cases,
attains the same performance as the optimal Bayesian poste-
rior, while the traditional scheme cannot. This improvement
is achieved by adapting the local updates to relevant attributes
of the distributed learning environment, particularly the Perron
eigenvector and the joint statistical dependence structure. Pos-
sible extensions include the characterization of alternative per-
formance measures, and a behavioral interpretation to explain
in which contexts the agents understand that is advantageous
to depart from what is optimal individually, and adapt their
behavior to the social setting.
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