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Abstract—Machine fault diagnosis is crucial for predicting and
preventing unexpected failures. In most practical application sce-
narios of machine inspection, access to data is limited. Moreover,
the labeled instances are few, which makes it challenging for the
existing data-driven techniques to learn efficient representations.
To address this issue, we propose a novel label-consistent convo-
lutional dictionary learning for machine fault classification. This
method employs a joint optimization formulation for learning
the dictionary atoms, corresponding coefficients, and weights
associated with a label-consistency term. The label-consistency
term added in the joint formulation helps in learning class-
discriminative dictionaries. The features generated from the
class-discriminative dictionaries result in robust inferencing when
used with an external classifier. The performance of the proposed
method is evaluated using the publicly available CWRU dataset
for bearing fault diagnosis. The results demonstrate the superior
performance of the proposed method compared to other state-of-
the-art deep learning and dictionary learning techniques for the
data limited scenario. Furthermore, with only 10% of training
data, the proposed method achieved an accuracy of around 85%,
while the other methods provided less than 50%.

Index Terms—Convolutional dictionary learning, Classifica-
tion, Sparse representation, Supervised learning, Machine fault
diagnosis

I. INTRODUCTION

Maintaining the health of industrial equipment is crucial
to avoid economic losses, the decline in production levels,
and potential hazards to human life. Numerous industries
are adopting more advanced digital technologies involving
artificial intelligence for machine condition monitoring to
enhance process efficiency and reduce downtime [1]–[3]. In
the past, researchers have employed various feature-based
(domain-crafted) [4] and data-driven approaches [5] to solve
complex machine fault diagnosis problems. Although tech-
niques involving domain-specific features are more intuitive
and comprehensible, determining the relevant and discrimi-
native features is a challenge and require domain expertise.
Hence, data-driven techniques have recently gained significant
attention due to the ability to learn meaningful representations
from the data on their own [6].

Most data-driven techniques employ Deep Neural Networks
(DNNs) [7] that learn useful patterns and relationships in data
through a complex nonlinear mapping between the neural net-
work layers. Thus, DNNs have been applied to a wide variety
of problems in machine condition monitoring, including fault
classification [8], [9], remaining useful life prediction [10],
and anomaly detection [11]. Generally, DNNs require a lot
of labeled data for training to perform well. However, data

is limited in most practical application scenarios of machine
inspection. Also, annotations are seldom available, making
the classification problem more challenging. To address this,
Dictionary Learning (DL) based techniques have been used
that can learn efficient representations from limited data [12].

In DL, a sparse representation of the signal is obtained as a
linear combination of a small number of basis vectors from the
dictionary, and its associated sparse coefficients learned from
the data. However, the computational cost of computing the
sparse representation for the entire signal is high. Thus, patch-
based processing is usually employed where the entire signal is
divided into low-dimensional overlapping blocks (i.e., patches
in image processing) [13]–[15]. However, the learned basis
vectors of patch-based dictionary learning exhibit shift-variant
behavior, i.e., basis vectors tend to contain shifted versions
of each other. As a result, it fails to capture the underlying
structure of the entire signal, since each block or patch is syn-
thesized independently. Additionally, the learned dictionaries
for an entire signal exhibit high redundancy due to the separate
learning of neighboring and overlapping blocks. To address
these limitations, Convolutional Dictionary Learning (CDL)
has been proposed to learn shift-invariant dictionaries from the
signals and has been successfully applied in various signal and
image processing applications [16]–[18]. In our current context
of machine health monitoring, the shift-invariant property of
CDL is beneficial in extracting periodic impulses, that are
typical signatures of a mechanical fault [19].

The existing methods based on CDL do not utilize label
information while learning the dictionary; hence the repre-
sentations learned are not class-discriminative. Including the
label information can aid in learning class-discriminative dic-
tionaries, thereby providing effective features for classification
that are particularly useful for data limited scenario. To enable
this, in this work, we propose a novel framework called Label-
Consistent Convolutional Dictionary Learning (LC-CDL) that
incorporates the label-consistency term into the CDL for-
mulation for classification tasks. This approach employs a
joint optimization formulation that learns the dictionary atoms,
corresponding coefficients, and weights associated with a
label-consistency term together, that facilitates the learning
of class-discriminative convolutional dictionaries from the
data. The learned dictionaries are utilized to generate class-
discriminative features, which are then fed as input to an
external classifier for robust inferencing. We have applied
this method for bearing fault diagnosis as bearings are the
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most critical and vulnerable parts of industrial machines.
Experimental results are presented using the publicly available
Case Western Reserve University (CWRU) dataset for bearing
fault diagnosis. The results demonstrate the enhancement in
performance obtained by the inclusion of the label-consistency
term in the CDL formulation. The proposed LC-CDL is shown
to outperforms other state-of-the-art methods for limited data
scenario.

To provide the necessary information of the proposed
method, the rest of the paper is organised as follows. Section
II provides a brief overview of dictionary learning techniques.
Section III then discusses the proposed label-consistent CDL
framework for classification. Section IV presents the results
and discussion, and Section V concludes the paper.

II. BACKGROUND ON DICTIONARY LEARNING

A brief overview of Dictionary Learning (DL) and Convo-
lution Dictionary Learning (CDL) is provided in this section.
A. Dictionary Learning

Given the data s ∈ Rn of length n, a sparse representation
of s can be obtained by a linear combination of few atoms
selected from a learned Dictionary D ∈ Rn×L, where L
denotes the number of atoms. The basic DL formulation is
expressed as:

argmin
D,x
‖Dx− s‖22 + λ ‖x‖1 (1)

where x ∈ RL are the coefficients and λ associated with the
l1 norm controls the sparsity of the coefficients x. Alternating
minimization [20] is one of the popular method used for
solving (1).
B. Convolutional Dictionary Learning

In the case of CDL, let {sk}Kk=1 be the kth input data
sample of length n with K training samples. As shown in
[17], a set of M distinct dictionary atoms {dm}Mm=1 and the
associated coefficient maps {xm,k}Mm=1 of the same size as
the data sample sk are obtained by solving the following:

arg min
{dm},{xm,k}

1

2

K∑
k=1

∥∥∥∥∥
M∑
m=1

dm ∗ xm,k − sk

∥∥∥∥∥
2

2

+λ
∑
m,k

‖xm,k‖1 (2)

s. t. ‖dm‖2 = 1 ∀ m
where ∗ denotes convolution operation, and the additional
constraint of ‖dm‖2 = 1 is applied to compensate the scaling
ambiguity between the dictionary atoms dm and the coefficient
maps xm,k.

The convolution operation of dm can be expressed as:
Dmxm,k = dm ∗ xm,k, where Dm ∈ Rn×n denotes the
convolution matrix. Taking Xm = [xm,0, ...,xm,K ] and
S = [s1, ..., sK ], (2) can be re-written as:

arg min
{Dm},{Xm}

1

2

∥∥∥∥∥∑
m=1

DmXm − S

∥∥∥∥∥
2

F

+ λ
∑
m

‖Xm‖1 (3)

s. t. ‖Dm‖2 = 1 ∀ m
Since the problem in (3) is not jointly convex in both the
variables {Dm} and {Xm}, alternating minimization is em-
ployed to solve for each variable keeping the other variable
fixed. The updates for {Dm} and {Xm} can be obtained

using ADMM iterations as shown in [17]. Note as opposed
to DL, that approximates the entire data sample by a linear
combination of a few dictionary atoms, in CDL, the entire data
sample is represented as a sum over a set of dictionary atom
convolutions with associated coefficient maps.

III. LABEL-CONSISTENT CDL
The proposed method utilizes CDL technique to capture

the discriminative local patterns from the data samples for
classification tasks. Fig. 1 presents the block diagram of the
proposed LC-CDL method. Referring to Fig. 1, given the
labelled data samples, class discriminative dictionaries are
learnt for generating efficient features (block A and B). These
features are later utilized to learn an external classifier (block
C) for robust classification. The training and test phase of the
proposed method are described in detail below.

CDL
Label-

Consistency
Data 

samples

External

Classifier

 Labels

(A) (B)

(C)

Fig. 1: Block Diagram of the Proposed Label-Consistent CDL

A. Training Phase
A joint optimization is carried out for learning the dictionary

atoms {Dm}, their corresponding coefficients {Xm} and
weights {Wm} associated with the label-consistency term
together for M filters. This unified framework enables dis-
criminant dictionary atoms to be learnt from small amount of
labelled training data. The joint optimization formulation is
expressed as:

arg min
{Dm},{Xm},{Wm}

1

2

∥∥∥∥∥
M∑
m=1

DmXm−S

∥∥∥∥∥
2

F

+λ

M∑
m=1

‖Xm‖1

+
η

2

∥∥∥∥∥Q−
M∑
m=1

WmXm

∥∥∥∥∥
2

F

(4)

s. t. ‖Dm‖2 = 1 ∀m
where, Q ∈ RC×K represents one hot encoded labels for C-
classes, such that Qij = 1 if the data sample j belongs to
class i, and 0 otherwise. The first two terms in (4) ensure
that the dictionary atoms and associated sparse coefficients are
learnt for data samples S such that the reconstruction error
is low. The last term is the label-consistency term which is
added here to assist in the learning of class-discriminative
dictionaries such that the same class features map to the
same class label. The hyperparameters λ and η control the
sparsity of the learnt coefficients, and trade-off between the
reconstruction and label-consistency terms, respectively.

We employ alternating minimization [20] to solve (4) to
estimate {Dm}, {Xm} and {Wm}. The sub-problems to
solve for the respective updates are given as:

{Dm} ← arg min
{Dm}

1

2

∥∥∥∥∥
M∑
m=1

DmXm − S

∥∥∥∥∥
2

F

(5)

s. t. ‖Dm‖2 = 1 ∀m
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{Xm} ← arg min
{Xm}

1

2

∥∥∥∥∥
M∑
m=1

DmXm−S

∥∥∥∥∥
2

F

+λ

M∑
m=1

‖Xm‖1

+
η

2

∥∥∥∥∥Q−
M∑
m=1

WmXm

∥∥∥∥∥
2

F

(6)

{Wm} ← arg min
{Wm}

∥∥∥∥∥Q−
M∑
m=1

WmXm

∥∥∥∥∥
2

F

. (7)

The update for the dictionary atoms {Dm} in (5) is sim-
ilar to the work in [17]. The weights associated with the
label-consistency term {Wm} are updated using simple least
squares [21] and is obtained as:

Wm = (Q−
M∑

j=1,j 6=m

W jXj)X
†
m (8)

where † denotes the pseudo-inverse. The update for the coeffi-
cients {Xm} are obtained by variable splitting, by introducing
an auxiliary variable Y m. Using this, (6) is re-written as:

arg min
{Xm},{Y m}

1

2

∥∥∥∥∥
M∑
m=1

DmXm − S

∥∥∥∥∥
2

F

+ λ

M∑
m=1

‖Y m‖1

+
η

2

∥∥∥∥∥Q−
M∑
m=1

WmXm

∥∥∥∥∥
2

F

(9)

s. t. Xm − Y m = 0.
We employ ADMM [22] to solve (9). The steps are given as:

Xm = arg min
{Xm}

1

2

∥∥∥∥∥
M∑
m=1

DmXm−S

∥∥∥∥∥
2

F

+

η

2

∥∥∥∥∥Q−
M∑
m=1

WmXm

∥∥∥∥∥
2

F

+
ρ

2

M∑
m=1

‖Xm−Y m+Um‖2F

(10)

Y m=arg min
{Y m}

λ

M∑
m=1

‖Y m‖1+
ρ

2

M∑
m=1

‖Xm−Y m+Um‖2F (11)

Um = Um +Xm − Y m (12)
where ρ controls the convergence rate of an algorithm. Ideally,
one would like to start with a small value of ρ and increase it
over iterations. However, as this is a Split Bregman [23] type
approach, the equality constraint is imposed at convergence by
Um. Therefore we can keep the value of ρ to be fixed. The
closed form update for Xm, is obtained by expanding the (10)
in terms of trace and equating the derivative with respect to
Xm to 0. This results in the following update for Xm:

Xm=(DT
mDm+ηW T

mWm+ρ)−1(DT
mS+ηW T

mQ−

DT
m

M∑
j=1,j 6=m

DjXj−ηW T
m

M∑
j=1,j 6=m

W jXj+ρ(Y m−Um))
(13)

Subsequently, the update for Y m is obtained using Soft
Thresholding Algorithm [24] as:

Y m = Sλ/ρ(Xm +Um). (14)
where, Sγ(V ) = sign(V ) � max(0, |V | − γ) and � denotes
element-wise multiplication. The dual variable Um in (12)
corresponds to the constraint Xm − Y m = 0 in (9), and is

updated by simple arithmetic operations.
Note that {Dm}, {Xm} and {Wm} are updated iteratively
until the objective function in (4) convergences. This marks
the end of the training phase where class-discriminative dic-
tionaries are learnt. These dictionaries are utilized to generate
coefficients that form class-discriminative features for classifi-
cation. Any suitable classifier can be learnt using these features
for robust inferencing.
B. Test phase

Given the test data samples Stest, the corresponding coeffi-
cient {Xtest

m } are estimated using the dictionary atoms {Dm}
learnt in the training phase. The solution for {Xtest

m } can be
obtained by solving [17]:
{Xtest

m } ← arg min
{Xtest

m }

1

2

∥∥∥∥∥
M∑
m=1

DmXtest
m −Stest

∥∥∥∥∥
2

F

+λ

M∑
m=1

∥∥Xtest
m

∥∥
1
.

(15)

We employ ADMM technique for updating (15) which is simi-
lar to the approach described in [17]. The computed coefficient
{Xtest

m } act as features that are fed to the trained external
classifier for estimating the class labels. In this work, we
have employed Support Vector Machine (SVM) for classifying
machine faults.

IV. RESULTS AND DISCUSSION

This section briefly describes the dataset and the baseline
methods used for the performance evaluation of the proposed
LC-CDL method. Subsequently, the results are discussed in
detail, and an ablation study is included to provide additional
insights into the proposed method.
A. Dataset Description

We have considered the publicly available CWRU [25]
dataset for bearing fault classification. It contains vibration
data collected at 12kHz for both healthy and faulty bearings
acquired at the drive end and fan end of the motor. The ex-
perimental setup comprises of a 2 hp motor, a torque encoder,
a dynamometer, and control electronics for data collection.
Three different faults, namely (i) Ball fault, (ii) Inner Race
fault, and (iii) Outer Race fault of different diameters (7mils,
14mils, and 21mils), are investigated. Data is collected for four
distinct operating conditions of 0hp, 1hp, 2hp, and 3hp, with
the motor speed varying from 1797 to 1720 rpm. For this work,
we have considered the faulty bearing data corresponding to
7 mils diameter, obtained from the drive end of the motor,
and data from all operating conditions (0-3hp) is combined
for performance evaluation.
B. Baseline Methods

The proposed method is compared against two deep learning
methods namely, standard 1-dimensional CNN (1D-CNN)
and the recent Semi-supervised Time series classification
(SemiTime) method [26]. Kindly note that the standard 1D-
CNN method is implemented with the same number of layers
and filters as that of the proposed LC-CDL for a fair compar-
ison. It employs a single 1D-convolution layer with 2 filters
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followed by a fully connected layer with a ReLU activation
function. While SemiTime employs 4-layer 1D-CNN with
batch normalization as discussed in their work. It can work
both in a supervised and semi-supervised setting. Here, the
supervised setting of SemiTime is used for comparison. Ad-
ditionally, we provide results for Label Consistent Dictionary
Learning (LC-DL) [15] to demonstrate the potential of CDL
over standard DL methods. Similar to the proposed method,
LC-DL employs the label-consistency term but with a standard
DL formulation to learn the class-discriminative dictionary and
the coefficients. The learned dictionary is used to compute the
coefficients which are fed to the external classifier.

C. Experimental Results

The raw data is normalized and split into windows of
n = 1024 samples with a 50% overlap, resulting in 3744
samples. The performance of all the methods is evaluated
using the accuracy metric with training sets of 10%, 20%,
30%, and 50%. For each training set, 10% of the data is
used for validation, and the remaining is used for testing. In
both LC-DL and the proposed LC-CDL, we use the SVM
with a degree 2 polynomial kernel as the external classifier.
However, in general, any suitable classifier can be used. The
hyperparameter tuning for the proposed LC-CDL method is
carried out using grid search, and the optimal values obtained
are η = 1, λ = 0.2, ρ = 200, and M = 2. The results obtained

TABLE I: Classification Accuracy with Different Methods

Methods Training data
10% 20% 30% 50%

1D-CNN with ReLU activation 0.49 0.64 0.81 0.90
SemiTime [26] 0.40 0.73 0.82 0.95

LC-DL [15] 0.43 0.57 0.68 0.88
LC-CDL 0.85 0.90 0.92 0.97

with different methods, averaged over 10 independent runs
is presented in Table I, with the best-performing technique
highlighted in bold. It can be observed that the proposed LC-
CDL achieves better results compared to other benchmarks
across all training sets. Among the deep learning based meth-
ods, it can be observed that when the training data ≥ 10%,
SemiTime performs better than 1D-CNN. It is worth noting
that with 50% training data, SemiTime performs similarly to
LC-CDL. However, when the training data reduces (10% or
20%), all the deep learning based methods fail to learn efficient
representations, resulting in poor accuracy. The proposed LC-
CDL demonstrates superior performance compared to all other
methods, including the LC-DL method. This can be attributed
to the fact that the shift-invariant basis of LC-CDL efficiently
captures the transient events of vibration signals, resulting in
learning good representations. The shift-invariant property of
CDL combined with label-consistency helps in learning class-
discriminative features and hence, a single layer configuration
of CDL with significantly less training data outperforms state-
of-the-art methods. The convergence plot of the objective
function in (4) with 20% training data is shown in Fig. 2. It
shows that the proposed LC-CDL method converges quickly,
within a few iterations.
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Fig. 2: Convergence of objective function

D. Ablation Study
Here we provide an ablation study to understand the impact

of different hyperparameters in (4) on the performance of
the method. Also, we present a comparative analysis of the
proposed LC-CDL method with different configurations of
CDL for additional insights.

1) Selection of hyperparameters: There are two hyperpa-
rameters associated with the LC-CDL formulation, namely
λ that denotes the sparsity of the coefficients, and η that
denotes the trade-off between the reconstruction and label-
consistency term. To determine the optimal values of these
hyperparameters, we varied them one at a time while keeping
the other fixed and measured the resulting impact on the
validation accuracy. Fig. 3a and 3b present the validation
accuracy with 20% of the training data for different values
of λ and η, respectively. For the case of η, it was observed
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(a) Validation Accuracy vs η
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(b) Validation Accuracy vs λ
Fig. 3: Impact of η and λ on validation accuracy (20% training data)

that η = 1.0 gave the best accuracy on the validation set.
This value provides equal importance to the reconstruction
and label-consistency term. For the case of λ, the validation
accuracy improved progressively up to λ = 0.2, beyond that a
drop in performance was observed. These optimal value of η
and λ, were employed to generate the results for the proposed
LC-CDL method presented in Table I.

2) Configurations of CDL: The LC-CDL method proposed
here employs an external non-linear classifier for classifica-
tion. Two different configurations of CDL are considered for
comparison with the proposed method: (i) LC-CDL without
external classifier, and (ii) CDL without label consistency. The
first configuration incorporates only blocks (A) and (B) of
LC-CDL from Fig. 1, and do not use an external classifier
(block C). Here, the weights of the label-consistency term acts
as a linear classifier and used for classification. The second
configuration employs blocks (A) and (C) of LC-CDL from
Fig. 1, where the CDL learns the features without the label
consistency term (blocks B). An external non-linear classifier
is used on the learned features. Table II presents the experi-
mental results obtained by the different configurations and the
proposed LC-CDL method. Additionally, comparisons with
1D-CNN method with linear activation are also presented that
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is similar in nature to the LC-CDL without external classifier
configuration. It can be observed that the proposed LC-CDL
method (with external classifier) outperforms other methods.
Although the first configuration yields marginally better results
than the 1D-CNN, it is not able to capture the non-linearities
in the data and hence does not perform well. The second

TABLE II: Different Configurations of the CDL Method

Methods Training data
10% 20%

1D-CNN with linear activation 0.34 0.41
LC-CDL without external classifier 0.41 0.42

CDL without label consistency 0.65 0.76
LC-CDL with external classifier (Proposed Method) 0.85 0.90

configuration performs better than the former methods as it
uses a non-linear classifier. However, the representations or
features learnt by them are not class-discriminative as they
do not utilize the label information. The joint learning of the
CDL and the label consistency term in the proposed method
facilitates the acquisition of class-discriminative features, that
leads to superior performance with the help of an external
non-linear classifier.

V. CONCLUSION

This paper presents a novel label-consistent convolutional
dictionary learning for classification tasks. The joint learning
of the convolution dictionary with label consistency term
allows class-discriminative dictionary to be learned from raw
signals. The external classifier utilizes the features generated
from class-discriminative dictionary to provide more reliable
results. Experimental results on CWRU data demonstrate
the superiority of the proposed method over state-of-the-
art techniques for data limited scenarios; they also indicate
the significance of the label-consistency term in the joint
formulation. The results showed that the proposed LC-CDL
method performed consistently well even with 10% training
data, which was challenging for all other baseline methods.

It is important to note that the proposed method is applied
for machine fault classification in this work, but the method is
generic and can be used in other applications for classification
tasks. In the future, a deep version of this method shall be
explored for classification and regression tasks.
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