
Introducing Stochastic Functional Link
Polynomial Filters

Simone Orcioni1, Alberto Carini2, Stefania Cecchi1 and Massimo Conti1
1Department of Information Engineering, Università Politecnica delle Marche Ancona, Italy

2Department of Engineering and Architecture, University of Trieste Trieste, Italy
s.orcioni@staff.univpm.it

Abstract—The class of Functional Link Polynomials (FLiP)
filters is very broad and includes many popular nonlinear filters,
as the well-known Volterra and the Wiener nonlinear filters. They
are linear in the parameters and can approximate arbitrarily well
any discrete-time, time invariant, finite memory, continuous non-
linear system. This work extends the approximation capability of
FLiP filters to systems that together with the previous properties
have random parameters. This is achieved by extending the
FLiP representation to random coefficients and applying the
Kosambi–Karhunen–Loève theorem to the coefficients.

I. INTRODUCTION

Functional link polynomial (FLiP) filters [1], [2] form a
very broad class of linear in the parameters (LIP) filters
that includes many of the most popular nonlinear filters, like
Volterra filters [3], [4] or Wiener nonlinear (WN) filters [4],
[5]. It includes also even mirror Fourier nonlinear (EMFN)
filters [6], Legendre nonlinear (LN) filters [7], Chebyshev
nonlinear (CN) filters [8] and others [2].

FLiP filters consist of linear combinations of products of
time-delayed univariate functions, following the constructive
rule of Volterra filter. In this way, the resulting basis functions
form an algebra that satisfies all conditions of the Stone-
Weierstrass theorem [2], allowing FLiP filters to be universal
approximators, i.e., they can arbitrarily well approximate any
discrete-time, time invariant, finite memory, continuous non-
linear system. Furthermore, the LIP property allows the use
of a projection method for the identification, i.e., the output
can be projected on each basis function, provided that these
functions form an orthogonal set.

Some families of FLiP filters provide an orthogonal repre-
sentation for some stochastic inputs. For example, WN filters
have orthogonal basis functions for white Gaussian inputs,
EMFN and LN filters for white uniform inputs, and CN filters
for a particular nonuniform distribution [1]. In this case, the
projection can be performed by estimating the expected value
of the product of the filter output and basis functions. If these
expected values are computed with time averages, the cross-
correlation method results.

As an alternative to the classic cross-correlation methods
that use stochastic inputs [9]–[13], a novel family of de-
terministic periodic sequences, the orthogonal periodic se-
quences (OPSs) has been recently proposed for identification
by means of cross-correlation [14], [15]. They can identify any
orthogonal or non-orthogonal FLiP filter, including Volterra

filters. Moreover, the input sequence does not need to be
perfect periodic: it can have any arbitrary persistently exciting
distribution and can also be a quantized sequence.

The objective of this work is to extend the approximation
capabilities of FLiP filters from discrete-time, time invariant,
finite memory, continuous nonlinear systems to stochastic
ones, where the filter coefficients are stochastic variables
whose distribution has to be determined. Nonlinear stochastic
filters have been considered only recently in the literature with
very few contributions [16], [17]. In these works, Volterra
series has been extended to model stochastic systems, by
expanding the kernels with random Kautz functions. Monte
Carlo simulations and the least-squares method were used
to identify the coefficients of the stochastic Kautz functions
[16], [17]. In our work, the more general class of FLiP filters
is extended to stochastic systems by using linear stochastic
process modelling, like Kosambi–Karhunen–Loève transform
(KLT). In discrete time domain the KLT matches the principal
component analysis (PCA), that performs a transformation
of the initial features into an equal number of uncorrelated
vectors. This transformation of basis could also be seen as a
linear representation of a discrete and finite stochastic process,
corresponding to the discrete time case of the KLT transform.
PCA [18], [19] is used in a wide field of applications,
from classical face recognition and object recognition [20]–
[22] to, more recently, ECG beat classification [23], speaker
identification [24], and blind image quality assessment [25].

The rest of the paper is organized as follows. The deter-
ministic FLiP filters are reviewed in Section II. The stochastic
FLiP filters are introduced in Section III. Section IV presents
some experimental results, involving the identification of a cas-
cade system composed of a real nonlinear system (a vacuum
tube preamplifier), and a simulated stochastic one. Section V
provides the concluding remarks. The following notation is
used throughout the paper: E{ · } indicates expected value,
bold letters are used for vectors and matrices, and Greek letters
are used for random quantities.

II. DETERMINISTIC FLIP FILTER

FLiP filters are universal approximators: they can arbitrar-
ily well approximate any discrete-time, time-invariant, finite
memory, continuous nonlinear system,

y(n) = f [x(n), x(n− 1), . . . , x(n−M + 1)] (1)
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where f is a continuous M -dimensional function from RM
1 to

R, x is the system input, with x(n) ∈ [−1,+1], and M is the
length of its memory.

FLiP filters have been proved to be universal approximators
[2]. The basis functions of FLiP filters are formed following
the constructive rule of Volterra filters starting from an ordered
set of univariate functions

{g0[ξ], g1[ξ], g2[ξ], ...} (2)

satisfying the requirements of Stone-Weierstass theorem. In (2)
g0[ξ] is a function of order 0, usually the constant 1, g2i+1[ξ]
for any i ∈ N is an odd function of order 2i + 1, g2i[ξ] for
any i ∈ N is an even function of order 2i.

A set of FLiP basis functions capable of arbitrarily well
approximating (1) can be developed by

1) writing the functions in (2) for ξ = x(n), x(n− 1), . . .,
x(n−N + 1), and then

2) multiplying the terms of different variables in all possi-
ble manners, as in the constructive rule of Volterra filters,
taking care of avoiding repetitions.

It can be verified that this set of basis functions and their linear
combinations form an algebra that separates points on RN

1 and
vanishes in no point (for the presence of g0) and thus satisfies
all requirements of Stone-Weierstrass theorem [2].

The order of a FLiP basis function is defined as the sum
of the orders of the constituent factors gi(ξ), and the diagonal
number of a basis function is the maximum time difference
between the input samples involved in basis function product.
A FLiP filter of order P , memory M , diagonal number D
(with D < M ) is the linear combination of all FLiP basis
functions, with order, memory, and diagonal number up to P ,
M , and D, respectively.

For sake of clarity, the FLiP basis functions up to order 3,
diagonal number D, and memory M are given in Table I. The
FLiP filter has N coefficients with

N =

(
D + P + 1

D + 1

)
+

(
D + P

D + 1

)
(M − 1−D) (3)

where
(
n
k

)
= n!

k!(n−k)! .
Any choice of the univariate functions gi(ξ) takes to a

different family of nonlinear filters. FLiP filters comprise many
well known families of nonlinear filters, specifically

• the Volterra filters, where gi(ξ) = ξi;
• the WN filters, which also derive for the truncation of the

Wiener series, where gi(ξ) are the Hermite polynomials
of variance σ2

x,

{1, ξ, ξ2 − σ2
x, ξ

3 − 3σ2
xξ, ξ

4 − 6σ2
xξ

2 + 3σ4
x, . . . } (4)

and others, as discussed in [2].

A. Matrix representation of FLiP filters

The input-output relationship of any FLiP filter of order K,
with memory of N samples, can be written as

y(n) =

N−1∑
i=0

hi (fix)(n) (5)

TABLE I
BASIS FUNCTIONS (fkx)(n) OF FLIP FILTER

Order 0:
g0[x(n)] = 1.

Order 1:
g1[x(n)], . . . , g1[x(n−M + 1)].

Order 2:
g2[x(n)], . . . , g2[x(n−M + 1)],

g1[x(n)]g1[x(n− 1)], . . . , g1[x(n−M + 2)]g1[x(n−M + 1)],
g1[x(n)]g1[x(n− 2)], . . . , g1[x(n−M + 3)]g1[x(n−M + 1)],

...
g1[x(n)]g1[x(n−D)], . . . , g1[x(n−M +D + 1)]g1[x(n−M + 1)],

Order 3:
g3[x(n)], . . . , g3[x(n−M + 1)],

g2[x(n)]g1[x(n− 1)], . . . , g2[x(n−M + 2)]g1[x(n−M + 1)],
...

g2[x(n)]g1[x(n−D)], . . . , g2[x(n−M +D + 1)]g1[x(n−M + 1)],
g1[x(n)]g2[x(n− 1)], . . . , g1[x(n−M + 2)]g2[x(n−M + 1)],

...
g1[x(n)]g2[x(n−D)], . . . , g1[x(n−M +D + 1)]g2[x(n−M + 1)],
g1[x(n)]g1[x(n− 1)]g1[x(n− 2)], . . .

g1[x(n−N + 3)]g1[x(n−M + 2)]g1[x(n−M + 1)],
...

g1[x(n)]g1[x(n−D + 1)]g1[x(n−D)], . . .
g1[x(n−M +D + 1)]g1[x(n−M + 2)]g1[x(n−M + 1)],

where (fix), i = 0, ..., N − 1, are basis functions taken from
Table I and derived from multiplication of gi(x(n)) functions.
Using vector notation, (5) becomes [2]

y(n) = hTfn (6)

h = [h0, h1, ..., hN−1]
T (7)

fn = [(f0x)(n), (f1x)(n), ..., (fN−1x)(n)]
T .

III. STOCHASTIC FLIP FILTER

Let us suppose to deal with a discrete-time stochastic
system, with finite memory. It can be expressed as

υ(γ, n) = φ(γ, x(n), x(n− 1), . . . , x(n−M + 1)) (8)

where φ is a nonlinear function, and γ is a vector of an
unknown number of normal random variables (r.v.).

The stochastic equivalent of (6) as a stochastic FLiP filter
can be written as

υ(γ, n) = η(γ)Tfn (9)

where the stochastic vector η(γ) has the vector h in (6) as its
realizations.

A. Representation of stochastic coefficients with
Kosambi–Karhunen–Loève Transform

If the stochastic process η(γ) is linear in the
stochastic parameters γ, it can be represented with the
Kosambi–Karhunen–Loève Transform (KLT). In the following
the dependence of η from γ will be omitted for simplicity.
Since the stochastic process η = η(γ) = [η1, . . . , ηN ]T, is
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discrete and finite, the KLT series has a finite number of
terms and it coincides with PCA

η = E{η}+
N∑
i=1

κiwi (10)

where κi and wi can be obtained as it follows.
Data for the PCA representation can be obtained by identi-

fying many realizations of the stochastic system. The PCA
transforms the set of initial features so obtained into an
equal number of uncorrelated vectors. These new vectors are
obtained by means of projections of the original features
on a new orthogonal basis that represents the directions of
maximum variance of the data. This basis can be obtained as
the eigenvectors of the covariance matrix of the data.

Let us be

Cηη = E{(η − he)(η − he)} (11)

the covariance matrix of the random vector η, and he = E{η}
its expected value. Being Cηη a positive definite symmetric
matrix it possesses a spectral representation

Cηη = WLWT (12)

where L is a diagonal matrix whose entries, li, are the
eigenvalues of Cηη; whilst the unitary matrix W contains
the eigenvectors

W = [w1, . . . ,wN ] . (13)

If the joint probability density function (pdf) of the source
variables η is normal, as assumed in the following, this trans-
formation decorrelates them, so that the pdf of the transformed
variables is also normal with a diagonal covariance matrix,
and the eigenvalues li are the variances of κi. If the pdf of the
original variables is not normal, the pdf of the transformed
variable can anyway be represented as a Gaussian mixture
model and its parameters estimated for examples with the
expectation maximization algorithm [26], [27].

We can represent η as a linear combination of latent
variables

η − he =

N∑
i=1

wT
i η wi =

N∑
i=1

κiwi =

N∑
i=1

√
liνiwi (14)

where the random variables κi are the projection of η on the
eigenvectors, the so called principal directions, and can be
written as the product of their standard deviation

√
li with a

unitary normal r.v. νi.
The number of latent variables used to express the stochastic

process can be reduced by using only the first K eigenvectors,
ordered according to their eigenvalues, resulting in

WK = [w1, . . . ,wK ] (15)

η = he +

K∑
i=1

√
liνiwi (16)

∑K
i=1 li∑M
i=1 li

≥ c (17)

where c is the fraction of the output variance of stochastic
process we want to take into account.

y
Sys2

Sys3

Sys1

υSA
x

Fig. 1. The stochastic system.

TABLE II
PARAMETERS OF STOCHASTIC SYSTEMS SYSi .

E{αi} σαi ti

−2 3 0
3 1 2TS

0 2 6TS

Eventually, using the complexity reduction (9) becomes

υK(γ, n) = hT
e fn +

K∑
i=1

√
liνiw

T
i fn. (18)

IV. EXPERIMENTAL RESULTS

In this section, we want to test the ability of an estimated
stochastic FLiP model to produce the same output of a given
stochastic system, related to a real vacuum tube preamplifier
for audio applications. To this end, since we will consider a
normal stochastic process that is completely defined by the
second order moment, the goodness of approximation will be
tested by comparing the covariance matrices.

We consider the continuous time stochastic system of Fig. 1
consisting of a non-linear deterministic system A followed
by three linear stochastic systems, Sysi with i = 1, . . . , 3.
The output y of the system A is the input to three different
systems, assumed linear with respect to the input and the
random parameters for the sake of simplicity.

The overall output is the sum of the three stochastic terms

υS(t) =

3∑
i=1

αiy(t− ti) (19)

where t ∈ R, αi and ti are the parameters of each system Sysi.
αi are normal r.v. with mean values and standard deviations
reported in Tab. II and ti are deterministic delays also reported
in Tab. II and taken for simplicity multiple of the sampling
period Ts. This system is representative of many real systems
since it represents a mixing of different delay paths with
random gains.

The system A is a real vacuum tube preamplifier, the
Behringer MIC100. To show the connection between the
deterministic system model and the stochastic system model,
the MIC100 was identified in discrete time domain with a
deterministic Volterra filter with P = 2, M = 25, and D = 2,
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(a) (b)

(c) (d)

Fig. 2. Volterra kernels of the Behringer MIC100 amplifier; (a) linear kernel
(b) main diagonal of second order kernel (c), (d) other diagonals of second
order kernel.

yP (n) = h0 +

M−1∑
i=0

h1(i)x(n− i)+

D∑
d=0

M−1−d∑
i=1

h2(i, i+ d)x(n− i)x(n− i+ d). (20)

The identification was performed with a 16 kHz sampling
frequency, using an OPS with a period of 65 536 samples
[15]. The deterministic kernels of the amplifier are shown in
Fig. 2. Defining the Normalized Mean Square Error, between
the output of a system yS and its model yM , as

NMSE =
(yS − yM )T(yS − yM )

yT
SyS

, (21)

the NMSE of the Volterra model of the deterministic Behringer
MIC100 was equal to 0.72%.

The amplifier output corresponding to this OPS was then
used as input to the systems Sysi to obtain 1000 realizations
of the overall output υS with a Monte Carlo method. These
realizations are then used to obtain the stochastic Volterra
model (18), using the procedure described in the previous
section. The order, memory, and diagonal number of the
stochastic model were chosen in accordance with the MIC100
model, adopting P = 2, M = 25, and D = 2. Each
realization h of the stochastic kernel η(γ) is organized as
h = [h0, .., h1(i), .., h2(i, i), .., h2(i, i+1), .., h2(i, i+2), ..]T.
Following the section III-A these realizations were used to
build the stochastic Volterra model in (18), whose kernels he

and wi, for i = 1, 2, 3 are shown in Fig. 3. Only 3 covariance
eigenvalues were different from zero, as could be expected
from the 3 independent r.v. present in the system. The vector
of standard deviations of the normal variables associated with
each eigenvector is σν = [0.6772, 0.4557, 0.2234]T.

(a) (b)

(c) (d)

Fig. 3. Vectors composing the stochastic Volterra model of system in Fig. 1;
(a) expected value he (b) w1, (c) w2, (d) w3.

(a) (b)

Fig. 4. Covariance matrix of a short segment of υS (a) obtained from the
system Fig. 1, (b) obtained from the stochastic Volterra model.

To test the stochastic model, a white uniform noise in the
range [−1, 1] of 200 000 samples has been applied to the
system in Fig. 1 and to the stochastic Volterra model.

The covariance matrices of a short segment of the outputs
so obtained are calculated and represented in Fig. 4. The
two covariance matrices are in excellent agreement and the
NMSE between the two is equal to 0.92%, thus showing the
convergence in distribution between the stochastic Volterra
model and the system in Fig. 1.

V. CONCLUSION

In this work, the class of FLiP filter is extended to model
systems with stochastic parameters by using the KLT trans-
form applied to the FLiP filter coefficients. In the experimental
results, a system consisting of a real part (an amplifier)
and a simulated part (a mixing of delay paths with random
gain) has been identified with a stochastic Volterra filter. The
covariance matrices of the outputs of the system and of the
model show an excellent agreement, proving the convergence
in distribution between the model and the system. In future
works, a technique to model stochastic processes that non-
linearly depend on random parameters will be introduced.
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