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Abstract—In this paper, we present a study on using weighted
total least squares method for parameter estimation of errors-
in-variables models with quadratic regressors. The statistics of
error is analyzed to fill in the gap between basic assumptions in
weighted total least squares and our case. A modified Cramér-
Rao lower bound is introduced for error quantification in the
proposed method. We perform evaluations based on simulations
with comparisons to standard least squares and generalized total
least squares. Numerical results show that the proposed method
outperforms the others in terms of estimation accuracy.

I. INTRODUCTION

Parameter estimation is a fundamental problem in statistical
signal processing and has been frequently investigated in
ubiquitous application scenarios, such as localization, sensor
calibration and epidemic modeling [1]–[3]. The basic structure
of the problem is established upon linear formulations with
fixed regressor matrix and measurements under noise. In
this case, the least squares (LS) method is the off-the-shelf
solution to parameter estimation and corresponding statistical
analysis [4]. In practice, however, the regressor matrix is
obtained via observations that are corrupted with noise. This
leads to the so-called errors-in-variables (EIV) problem, and
estimates delivered by the standard least square are in general
biased, and statistical analysis is often unreliable.

To mitigate this issue, the total least squares (TLS) can
be deployed as an alternative, with estimates given in closed
form via singular value decomposition [5], [6]. One limitation
of the approach is that noise terms in the regressor matrix and
measurements are required to be zero-mean and independent
and identically distributed, which is hardly feasible in reality.
In the cases where regressor matrices are of certain special
structures, e.g., with diagonal-constant form, the structured
total least squares (STLS) method can be applied [7], [8].
Another common case for simplification appears when some
columns in the regressor matrix are free of error, EIV problems
can then be solved through the generalized total least squares
(GTLS) [9].

Towards EIV regression of general setup, one promising
solution is the weighted total least squares (WTLS). In [10],
the WTLS problem was applied with Lagrange multipliers to
handle noises of Kronecker product covariance structure. An-
other variant was proposed in [11] to cope with fully correlated
noise covariance, where both constrained and unconstrained
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formulations for optimization were investigated. It is shown
in [12] that the structure of the regressor matrix can be
preserved in its error term provided that the covariance matrix
satisfies certain basic conditions. This insight was further
generalized in [13], where the constraints on the regressor
matrices were further relaxed.

The aforementioned WTLS variants have been widely ex-
ploited, in particular, in geodesic-related application scenar-
ios [14]–[17]. However, existing works have only referred to
EIV problems with regressor matrices of linear dependencies.
In terms of nonlinear EIV regressions, a typical measure is
to linearize the nonlinear elements in the regressor matrix for
adaptation to a linear setup, such that WTLS can be applied
in its standard formulation.

In order to quantify the uncertainty of EIV estimates, the
Cramér-Rao lower bound (CRLB) has been investigated to
provide a theoretical reference for evaluation. One study can
be found in [18], where the CRLB is provided for linear EIV
models under Gaussian-distributed observation noise. As for
nonlinear EIV regressions, however, the Gaussian assumption
no longer holds, and a closed-form expression of CRLB is in
general infeasible. By marginalizing over the observed signal,
methods have been proposed in this regard based on numerical
integration or approximation [19], [20].

Contribution

In this work, we investigate the general solution to nonlinear
errors-in-variables regression problem with regressor matrices
of quadratic structure. For that, we adopt weighted total least
squares method with moment analysis on the error term
of the quadratic component. For evaluation of the WTLS
estimates in nonlinear EIV regression, a principled study on
CRLB is further provided based on numerical integration.
The proposed WTLS-based approach is compared to ordinary
least squares and generalized total least squares methods based
on simulation. Numerical results show that the WTLS-based
method delivers superior accuracy over LS and GTLS.

The remainder of the paper is structured as follows. Problem
formulation of general EIV regression is introduced in Sec. II.
The WTLS method is adapted to quadratic EIV models in
Sec. III with a dedicated discussion on corresponding statis-
tical properties. Further, a modified version of the CRLB is
provided in Sec. IV. The proposed techniques are validated
based on simulations in Sec. V, and the work is concluded in
Sec. VI.
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II. PROBLEM FORMULATION

Throughout the paper, we consider the nonlinear EIV re-
gression model of the following form

y = A(x∗)θ + wy , (1)

where A(x∗) is a 1 × d row vector. y ∈ R is measured
variable with noise. In general, A(x∗) denotes a nonlinear
vector-valued function of a scalar x∗, while θ contains the
unknown parameters to be estimated. Further, wy is additive
white Gaussian noise (AWGN) with variance of σ2

wy
, and

x∗ denotes noise-free data for the regressor with distribution
x∗ ∼ N (µx∗ , σ2

x∗). In practice, only an observation x of x∗

is available following

x = x∗ + wx , (2)

where wx is AWGN of variance σ2
wx

. This configuration gives
us an EIV model, because both the measurement y and the
regressor A(x) are affected by noise. To simplify this problem,
we assume that wy and wx are independent to each other,
and σ2

wy
and σ2

wx
are known, but not necessarily to be equal.

To simplify the discussion, we can assume that x∗ and wx

are independent. The ordinary least squares method delivers
biased estimate in this case due to the measurement noise in
x. Total least squares and its variants shall be used instead.
Consider N samples, then

y = [ y1, y2, . . . , yN ]⊤ ∈ RN ,

x = [x1, x2, . . . , xN ]⊤ ∈ RN ,

A(x) = [A⊤(x1), A
⊤(x2), . . . , A

⊤(xN ) ]⊤ ∈ RN×d .

(3)

The subscript indicates samples. The model parameter θ
should be estimated given the noise-corrupted measurements
y and A(x).

III. PROPOSED METHOD

In this section, we discuss the details about how to use
WTLS to solve the regression problem in (1) and (2). We
introduce the principle of WTLS in the first subsection, and
adapt the WTLS to the quadratic EIV problem afterward.

A. Weighted Total Least Squares

The EIV problem based on (1) and (2) with N samples is
given by

y + ey = (A+ EA)θ , (4)

where EA is the correction term for A. ey is the correction
term for y. It can be verified that (4) is equivalent to

Be+BY = 0N , (5)

where e = vec([ EA, ey ]) ∈ RN(d+1) of covariance Q
(concretized in Sec. III-B). vec(·) denotes the vectoriza-
tion of a matrix, and 0N is a N -dimensional zero vector.
Y = vec([A, y ]), which composes all observations. B =

[ θ⊤ ⊗ I,−I ], with ⊗ denoting the Kronecker product and

I the identity matrix with proper dimension. If e is zero-
mean, the WTLS problem is to solve the following constrained
optimization problem

min
{θ,e}

{e⊤Pe} , s.t. B(e+ Y ) = 0N , (6)

where matrix P = Q−1. Solving (6) cannot be done in closed
form. The method of the Lagrange multipliers can be applied,
with both the parameter θ and the correction vector e estimated
iteratively. The Lagrange function of (6) is given as

L(e, θ, λ) = e⊤Pe+ 2λ⊤(Be+BY ) , (7)

where λ contains the Lagrange multipliers. By setting the
partial derivative of L(e, θ, λ) with respect to e, θ and λ to
zero, we get the following equations

∂L

∂e

∣∣∣
ê,λ̂,θ̂

= 2Pê+ 2B̂⊤λ̂ = 0N(d+1) ,

∂L

∂λ

∣∣∣
ê,λ̂,θ̂

= 2B̂ê+ 2B̂Y = 0N ,

∂L

∂θ

∣∣∣
ê,λ̂,θ̂

= −2A⊤λ̂− 2Ê⊤Aλ̂ = 0d ,

(8)

respectively. Here, (̂·) denotes an estimate. An iterative solu-
tion to (6) by solving (8) follows

B̂i+1 = [ (θ̂
i
)⊤ ⊗ I, −I ] ,

λ̂
i+1

=
(
B̂i+1Q(B̂i+1)⊤

)−1
(Aθ̂

i
− y) ,

êi+1 = −Q(B̂i+1)⊤λ̂
i+1

,

θ̂
i+1

= (Ci+1)−1Di+1(y + Ê i+1
A θ̂

i
) ,

(9)

where the matrices Ci+1 and Di+1 are given by

Ci+1 = (A+ Ê i+1
A )⊤

(
B̂i+1Q(B̂i+1)⊤

)−1
(A+ Ê i+1

A ) ,

Di+1 = (A+ Ê i+1
A )⊤

(
B̂i+1Q(B̂i+1)⊤

)−1
.

Here, Ê i+1
A can be extracted from êi+1 in the corresponding

position and reshaped to matrix form. Given that e is zero-
mean with a known covariance matrix, the WTLS problem
of (6) can be solved iteratively using equations in (9). We
provide the pseudo-code summarizing the derivation above in
Alg.1. The initial value θ̂

0
of the parameter can be obtained

via standard least squares. Note that the algorithm works as
long as the matrix B̂QB̂⊤ is non-singular, even if we have
a singular covariance matrix Q. This is a quite common case
that can occur in practice, and an example follows.

B. Statistical Analysis of Error in Regressor Matrix

In general, the regressor A(x) in (1) involves nonlinear
functions of the observation x. In this case, analyzing sta-
tistical property for the error term is nontrivial. In order to
showcase the general structure of analysis, we now assume
that elements in A(x) follow a quadratic form of x. Extensions
to other polynomial cases are straightforward based on the
analytical moment computation of Gaussian random variables.
The regressor matrix of a quadratic EIV model follows

A(x) = [ 1, x, x2 ] . (10)
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Algorithm 1: WTLS-Based EIV regression

Input : θ̂
0
, Q, A, y, threshold ϵ

Output: θ̂
i← 1 ;
while η < ϵ do

B̂i ← [ (θ̂
i−1

)⊤ ⊗ I,−I ] ;

λ̂
i
← (B̂iQ(B̂i)⊤)−1(Aθ̂

i−1
− y) ;

êi ← −Q(B̂i)⊤λ̂ ;
Ci ← (A+ Ê iA)⊤(B̂iQ(B̂i)⊤)−1(A+ Ê iA) ;
Di ← (A+ Ê iA)⊤(B̂iQ(B̂i)⊤)−1 ;

θ̂
i
← (Ci)−1Di(B̂iQ(B̂i)⊤)−1(y + Ê iAθ̂

i−1
) ;

η ← ∥ θi − θi−1∥ ;
end
θ̂ ← θ̂

i
;

According to (5), the measurement correction term ey is as-
sumed to be zero-mean with variance σ2

wy
. For brevity, we also

assume that the first column in A is composed of constants
that are noise-free. Thus, the first column of the regressor
correction matrix EA is zero-valued. We now concatenate the
correction terms for regressor and measurement as

[ EA, ey ] = [ 0N , ex, ex2 , ey ] . (11)

The non-conventional part in (11) is the third column, which
refers to the error for the quadratic term. To simplify the
notation for analysis, we now derive the error term w.r.t. one
observation sample, where

x2 = (x∗ + wx)
2 = (x∗)2 + w2

x + 2x∗wx .

Thus, the whole error term for the quadratic terms is given by

wx2 = x2 − (x∗)2 = w2
x + 2x∗ wx . (12)

Consequently, the mean and covariance of wx2 follow

µwx2 = E(w2
x + 2x∗wx) = σ2

wx
and

σ2
wx2

= var(w2
x + 2x∗wx) = 2σ4

wx
+ 4σ2

x∗σ2
wx

,
(13)

respectively. After computing the variance for each sample, it
is straightforward to extend it to vector form given that the
error for each sample is independent from each other.

On the other hand, the mean value of the correction matrix[
EA, ey

]
can be computed as

E
(
[ EA, ey ]

)
= [ 0N , 0N , σ2

wx
1N , 0N ] , (14)

with 1N ∈ RN denoting a vector of ones. The next step is to
compute the covariance matrix of e = vec([EA, ey]). As we
discussed in (11), there are four columns in [EA, ey] and the
first column is zero-valued. Thus, we only need to compute
the covariance matrix for the last three columns. Computing
covariance matrices for ex and ey is straightforward, and their
cross-covariance matrix is 0N . As for the covariance matrix
of ex2 , we exploit the covariance of the observation noise
term wx2 based on the statistical property given in (13). This

follows cov(ex2) = σ2
wx2

IN , where IN is an N ×N identity
matrix. The cross-covariance between ex2 and ey is also 0N .
The last part is the cross-covariance matrix between the second
and the third column in (11). To simplify the notation, we
consider the scalar case in the cross-covariance calculation
that can be expressed as follows

cov(ex, ex2) = cov(wx, wx2) = 2E(x∗w2
x) = 2µx∗σ2

wx
.

Based on the derivations above, covariance of the correction
matrix in (11) can be obtained in the following form Q =

0N 0N 0N 0N

0N σ2
wx

IN 2σ2
wx

µx∗IN , 0N

0N 2σ2
wx

µx∗IN 2σ4
wx

IN + 4σ2
wx

σ2
x∗IN 0N

0N 0N 0N σ2
wy

IN


(15)

which is deployed to the WTLS method summarized in Alg.1.

C. Implementation

So far, we have computed the mean and covariance matrix
for the complete correction matrix in (11). The next step is to
compensate the bias term and construct the WTLS problem in
accordance with Section III-A. Because of the non-zero mean
in (14), we first compensate the mean for the measurement
data Y in (5) to get the unbiased measurement Y c as follows

Y c = Y − vec
(
E
(
[ EA, ey ])

)
. (16)

The bias compensated measurement Y c is corrupted by zero-
mean noise, which satisfies the setup required by WTLS. Once
bias compensation is done, we can exploit the WTLS algo-
rithm in Alg. 1 for quadratic EIV regression by concretizing
the elements in covariance matrix Q in (15).

IV. CRAMÉR-RAO LOWER BOUND

Computing the theoretical lower bound in terms of the root
mean square error (RMSE) is necessary for most regression
problems for the sake of evaluation. Therefore, we investigate
the CRLB of (1) considering (2) with the quadratic example in
(10) in this section. In EIV configuration, we need to estimate
both the model parameter and the correction in the regressor
matrix. It means that both θ and x∗ need to be estimated
given the noise corrupted measurement y and x. As shown in
(2), x∗ is assumed to be a Gaussian random variable that can
be treated as a nuisance parameter besides the deterministic
parameter θ. In this regard, the so-called modified Cramér-Rao
lower bound proposed in [19] is applicable as an alternative
to conventional CRLB. Given the random parameter x∗, we
denote the conventional CRLB of the estimate as J(θ|x∗).
Based thereon, the modified CRLB is given as

MJ(θ) = Ex∗(J(θ|x∗)) , (17)

where the conventional CRLB follows

J(θ|x∗) = −
[
Ey,x

(
∂2L(θ, x∗)

∂θ∂θ⊤

)]−1

, (18)
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Fig. 1: Quadratic EIV regression in scenario 1 of Sec. V with deterministic constant term in regressor matrix. Compared with
the ground truth (GT), the proposed WTLS resembles the GTLS with better accuracy than LS. The dashed and solid black
ellipses indicate the uncertainty estimate (95% confidence interval) given by WTLS and modified CRLB, respectively.

Fig. 2: Quadratic EIV regression in scenario 1 of Sec. V with uncertain constants in regressor matrix. The proposed WTLS
outperforms both GTLS and LS.

with L(θ, x∗) = logP (y, x|θ, x∗). Based on the assumption of
independence among different observations, the log-likelihood
function L(θ, x∗) can be derived as

L(θ, x∗) = logP (y|θ, x∗) + logP (x|x∗)

=

N∑
i=1

logP (yi|θ, x∗
i ) +

N∑
i=1

logP (xi|x∗
i ) .

(19)

To obtain the value of the conventional CRLB as shown
in (18), we need to calculate the second-order derivative
of L(θ, x∗) with respect to θ. This only refers to the first
term in (19). According to (1), we have P (yi|θ, x∗

i ) ∼
N (A(x∗

i )θ, σ
2
wy

). Thus, the second order derivative can be
computed analytically as follows

∂2L(θ, x∗)

∂θ θ⊤
= − 1

σ2
wy

N∑
i=1

A(x∗
i )

⊤A(x∗
i )

= − N

σ2
wy

 1 x∗ (x∗)
2

x∗ (x∗)2 (x∗)
3

(x∗)2 (x∗)
3

(x∗)
4

 ,

(20)

with (x∗)
k
= 1

N

∑N
i=1 (x

∗
i )

k. (20) is independent of x and y,
which results in

J(θ|x∗) =
σ2
wy

N

 1 x∗ (x∗)
2

x∗ (x∗)2 (x∗)
3

(x∗)2 (x∗)
3

(x∗)
4


−1

. (21)

Computing the modified CRLB in (18) follows the integration

MJ(θ) =

∞∫
−∞

P (x∗)J(θ|x∗)dx∗ . (22)

The distribution in the integral (22) is given by P (x∗) ∼
N (µx∗1N , σ2

x∗IN×N ). Because of the nonlinearity in J(θ|x∗),
there is no analytical solution to (22). Therefore, we approxi-
mate it through Monte Carlo (MC) method.

V. NUMERICAL SIMULATION

In this section, we investigate the performance of the
proposed WTLS method in the quadratic EIV regression
introduced in Sec. II. The following two simulation scenarios
are discussed with results shown based on 100 MC runs.

Scenario 1: We evaluate the WTLS and compare it with LS
and GTLS in solving EIV problem configured according to
TABLE I. We first set up the regressor matrix A, with its first
column being noise-free, which corresponds to the standard
setup of the GTLS method. In Fig. 1, it can be validated that
the proposed WTLS delivers statistically the same result as
GTLS. In order to verify the advantages of WTLS regarding
solving the general case of nonlinear EIV regressions, an
AWGN of variance σ2

w1
= 0.04 is further added to the

regressor constants (first column of A). Fig. 2 shows that the
WTLS method delivers the best result in terms of estimation
accuracy thanks to the proposed full covariance matrix and
bias compensation. The setup of adding noise to constant terms
in regressor can be useful in practice. One potential use case
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Fig. 3: RMSE over various noise configurations. Red and blue
curves denote results of WTLS and GTLS, respectively.

is temporal calibration of sensor networks, where uncertain
clock offsets of sensor nodes are estimated [21].

Scenario 2: We now keep the setup of uncertain constants
in the regressor matrix and vary its noise level of the remaining
parameters following the configuration in TABLE I. The stan-
dard LS is not applicable as shown in the former scenario, thus
it is not considered here. As shown in Fig. 3-(A), the proposed
WTLS makes more improvement on estimation accuracy as
σ2
w1

increases. Further, we keep σ2
w1

= 0.04, and vary σ2
x∗

and σ2
wx

to perform evaluation over different signal-to-noise
ratios. Shown in Fig 3-(B) and (C), WTLS shows consistently
better performance over GTLS. We also perform evaluation
over various measurement noise levels as shown in Fig. 3-(D),
and WTLS outperforms GTLS with a considerable margin.

TABLE I: Parameter configuration in evaluation.

parameter µx∗ σ2
x∗ σ2

wx
σ2
wy

θ N

value 0 0.5 0.09 0.09 [ 1, 1, 1 ]⊤ 500

VI. CONCLUSION

In this paper, we presented a novel study on exploiting
weighted total least squares for solving errors-in-variables
regression of quadratic structure. A general description of
applying WTLS to nonlinear EIV models was provided,
and the fundamental procedure of establishing the weighting
matrix was showcased by investigating statistical properties
of the regressor. In accordance with the proposed estimation
method, we introduced the modified Cramér-Rao lower bound
for evaluating the estimates. It serves as an alternative to
the conventional CRLB in EIV regression containing random
noise-free signal. Numerical results from simulations show
superior performance of WTLS in quadratic EIV regression
over standard LS and GTLS methods. Based on our current
results, it is possible to improve the estimation accuracy. One
promising direction is to exploit the expectation maximization

algorithm in maximum likelihood framework. Besides the
quadratic EIV regression problem considered in our current
work, it is also promising to investigate other types of non-
linear structures in the regressor matrix. Furthermore, the
proposed approach is to be applied to real-world problems for
providing more extensive insights in practice. One possibility
is the usage in the field of epidemic modelling [3].
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