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Abstract—This paper investigates the problem of sampling and 
reconstructing bandpass signals using two-channel time encoding 
machine (TEM). It is shown that the sampling in principle is equiv-
alent to periodic non-uniform sampling (PNS) with time-varying 
shifts. Then the TEM parameters can be set according to the signal 
bandwidth and amplitude instead of upper-edge frequency and 
amplitude as in the case of bandlimited/lowpass signals. For a 
bandpass signal of a single information band, it can be perfectly 
reconstructed if the TEM parameters are such that the difference 
between any consecutive values of the time sequence in each chan-
nel is bounded by the inverse of the signal bandwidth. A recon-
struction method incorporating the interpolation functions of PNS 
is proposed. Numerical experiments validate the feasibility and ef-
fectiveness of the proposed TEM scheme.  

Keywords—Bandpass signals, Nonuniform sampling, Time en-
coding machine, Signal reconstruction 

I. INTRODUCTION 

Time encoding machine (TEM) is a biological neuron-like 
paradigm to perform signal sampling. Different from the 
traditional sampling by measuring amplitudes of a continuous-
time signal at pre-defined sampling times, TEM makes sampling 
by recording the time at which the signal or its function takes on 
a preset value. TEM was firstly proposed for the sampling and 
reconstruction of the bandlimited/lowpass signals [1, 2]. Its 
initial success was then extended to the cases of signals in shift-
invariant subspaces [3], finite-rate-of-innovation signals [4, 5], 
and even non-bandlimited signals [6]. Some hardware 
prototypes are developed [7, 8] and signal processing with time 
encoding sampling also attracts attention [9, 10]. 

TEMs are event-driven sampling schemes and have different 
structures, such as integrate-and-fire time encoding machine 
(IF-TEM) [1], leaky integrate-and-fire time encoding machine 
[11], differentiate-and-fire time encoding machine [12], 
crossing time encoding machine [3], and so on. In this paper, we 
are interested in IF-TEM described by three parameters: bias, 
scale and threshold [1]. In operation, TEM adds a bias to its input, 
scales the sum and integrates the result, then compares the 
integral value with a threshold. A threshold-crossing or spiking 
time is recorded when the integral reaches the threshold. 

TEM outputs a time sequence consisting of strictly 
increasing times and the information of signal is encoded in the 

spiking sequence. Then a fundamental problem is if the 
sequence contains the information enough to reconstruct the 
signal from the sequence or under what conditions the signal can 
be reconstructed from the sequence. Interestingly, it is found that 
for the bandlimited signal, it can be perfectly reconstructed if the 
difference between any two consecutive values of the time 
sequence is bounded by the inverse of the Nyquist rate [1]. That 
is to say that the spiking interval between any two consecutive 
spiking times should be smaller than or equal to the inverse of 
the Nyquist rate. This condition is closely related to the 
traditional Shannon-Nyquist sampling theory [13]. For 
convenience, we call the largest interval as TEM interval in this 
paper. 

TEM interval is equal to the inverse of the Nyquist rate of 
the signal. For large bandwidth signals, TEM with small TEM 
interval is needed for the signal reconstruction. This is much 
inconvenient for the selection of TEM parameters as in 
traditional sampling by which high-speed analog-to-digital 
converters are required. Then multi-channel TEM is developed 
[14~16]. It is found that for an M-channel TEM with shifted 
integrators, perfect reconstruction is possible with M times the 
TEM interval of the single channel case. This result is much like 
Papoulis’s multi-channel sampling criterion in the traditional 
sampling setup [17]. 

In this paper, we study the time encoding of bandpass signals. 
Traditionally, the signals can be sampled by several schemes 
with the minimum Landau’s rate as discussed in [18]. Among 
them, periodic nonuniform sampling (PNS) scheme [19] is a 
popular one due to its hardware simplicity. PNS consists of 
multiple sampling channels and outputs multiple sampling 
sequences with relative time-shifts. By properly setting the time-
shifts and the interpolation functions, the bandpass signal can be 
reconstructed. What is important is that the sampling period in 
each channel is set according to the signal bandwidth and the 
channel numbers, and the minimal Landau’s rate can be 
achieved [18]. Although the multi-channel TEM and the PNS 
scheme are formulated from different mechanisms, they share a 
common property of shifts. The shifts in PNS imply the time 
shifts between different sampling channels and thus generate 
different under-sampling sequences. In multi-channel TEM, the 
shifts refer to the integrator shifts between different TEM 
channels, which in turn introduce the time shifts in recording 
time instants and then generate different spiking sequences. It is 
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Fig.1 Time encoding machine with spike trigger reset 

this observation that makes us perform the time encoding 
sampling of the bandpass signals via multi-channel TEM with 
TEM interval determined by the signal bandwidth instead of the 
upper frequency. Then the largest TEM interval can be 
approached. We will take the bandpass signals consisting of a 
single information band as an example for the following 
discussions. The two-channel TEM in [15, 16] is used to 
perform the TEM sampling and a reconstruction scheme 
incorporating the interpolation function in [20] is developed. 

In the following of this paper, the fundamentals of TEM and 
PNS are firstly reviewed. Then a two-channel TEM is discussed 
and a reconstruction algorithm is provided. Finally, simulation 
results are presented and conclusions are drawn. 

II. PRELIMINARIES: TEM AND PNS 

In this section, we will summarize main results of TEM and 
PNS from [1] and [19, 20], respectively. 

A. TEM 

The TEM or single-channel TEM is shown in Fig.1. It 
consists of adder, integrator and comparator. Three parameters 
 ,   and b  are used to describe the structure. For input signal 
 x t , TEM adds a bias b  to it, scales the sum by 1   and then 

integrates the result until a threshold  . When this threshold is 
reached, a time is recorded, the value of the integrator is reset to 
 . To keep regular operation, the signal  x t  is assumed to 

be bounded,  x t c , and the bias b  is set to be b c  so that 
the integrator output is a positive increasing function of time. In 
this way, TEM outputs a time sequence consisting of strictly 
increasing times  kt k  with 1k kt t  , and it satisfies 
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In this way, we derive a amplitude-integral sequence of 
 ky k   from the time encoding  kt k  and TEM 
parameters   , , b  . Because of non-uniform distances 
between any two consecutive spiking times, the sequence 
 ky k   resembles irregular sampling sequence of  x t . 

In the TEM theory,   ,k kt y k  is used to reconstruct 
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Fig.2 Two-channel periodic nonuniform sampling 
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That is, the difference between any two consecutive values of 
the sequence  kt k   less than or equal to  2 b c  . For 
convenience, we define  LP

TEM 2T b c   and name it as the 
TEM interval. For a 2 -bandlimited signal, i.e., its Fourier 
transform is zero for  ,    , it has been proved [1] that 
perfect reconstruction is possible if 

 LP
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where NYQF    is the Nyquist sampling rate of the signal 
 x t . It is seen that for perfect reconstruction, the TEM interval 

is bounded by the inverse of the Nyquist rate. To be different 
from the bandpass signal discussed in this paper, we use the 
superscript LP‘ ’ to denote it for the case of the bandlimited or 
lowpass signals. 

To reconstruct the signal  x t , a possible way is to do as in 
irregular sampling. Let  

    LPx t c g t s   


 (5) 

where  1 2s t t     ,      LP sing t t t  and  c  are 
coefficients to be determined. From (5), we have 
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Then by (2), we get 
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from which a matrix equation Gc q  can be established,  

 q= k k
y
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LP,
,
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Then the coefficients  c  can be estimated as 
 c G qc 


     where G  is the pseudo-inverse of G . 
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Fig.3 Two-channel time encoding and decoding 

B. PNS 

We consider a bandpass signal  x t  with its support on 
   , ,l u u l    

 
and u lB   

 
as its bandwidth. PNS 

with two channels is shown in Fig.2, where the channels A and 
B assumes periodic sampling with sampling period T  and 

 0,d T  is the time-shift. In the following, we assume that 
2T B and then the Landau’ rate is approached. 

From Fig.2, it is seen that the sampling instants of A are 
always d  ahead of B. Note that the sampling period is larger 
than the inverse of Nyquist rate. Then aliases of the band 
contents are inevitable and it is impossible to perfectly 
reconstruct the  x t  by directly combining the two channel 
samples. However, it is shown that perfect reconstruction is 
possible if d  is such that 0dK T  is not an integer where 

0 2 lK B    , and the signal  x t  can be reconstructed by 

    BP, ,x t x g t T d   


  (6) 

where x  is formulated from  x kT  and  x kT d  as 
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and  BP, ,g t d  is defined as 
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Note that we take a representation of (6) which is in the form 
different from that in [20]. 

PNS is an alternative sampling framework among multiple 
channel signals. In fact, we can combine and order the sampling 
instants as 
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Then we have irregular samples  x t . Ref. [21] studies the 
irregular sampling from the PNS theory and guarantees the 
reconstruction of  x t  when 1t t T    . 

III. BANDPASS TEM: SAMPLING AND PERFECT 

RECONSTRUCTION OF BANDPASS SIGNALS 

We consider a two-channel TEM in Fig.3, in which TEM A 
and TEM B are set to have the same TEM parameters but with 
different integrators. As discussed in [15], the thresholds of the 
two TEMs will be reached at different times. Then TEM A and 
TEM B will record different spiking times and produce different 
encoding of  x t . In particular, the two spiking sequences will 
be interleaved in time, i.e., there is always one spike time from 
B between any two spikes of A and vice versa. The interleaved 
sequences are inputted to reconstruction system to reconstruct 
the  x t . 

Assume that the integrator of A is ( ) 0A   ahead of the 
integrator B (modulo 2 ). It follows that the integrator of B is 

( ) ( )2B A     ahead of the integrator A. For convenience, we 
let ( ) 2A    . Then from the same starting time, the TEM 
A will output a spiking time ahead of TEM B. Denote the spike 
times of A and B as  ( ) ,A

kt k  and  ( ) ,B
kt k  , respectively. 

We have ( ) ( ) ,A B
k kt t k   . The amplitude-integral sequences 

of TEM A and TEM B are given by 
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We now combine and order the spike times ( )A
kt  and ( )B

kt  into 
one set of spike times  ,t    , 
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Then we can formulate an alternative set of discrete 
representations   ,y     defined as 
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By comparing the y  with the PNS-generated irregular 
samples  x t , we may find that there are strong similarities 
between them. Then we can argue that the signal   x t

 
can be 

reconstructed from the sequence generated by two-channel 
TEM when 1t t T   

  . If we define the TEM interval as 
 BP

TEM 2T b c   for the two-channel TAM, the signal   x t
 can be reconstructed if 
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Fig.4 Signal and its power spectral density 

 

Fig.5 Two-Channel TEM: Signal and its reconstruction (upper) and 
integrator outputs (lower) 

 

Fig.6 Single-Channel TEM: Signal and its reconstruction (upper) and 
integrator output (lower) 

Then we can set the TEM parameters according to the signal 
bandwidth instead of its upper-edge frequency.  

Although the two-channel TEM and the PNS scheme are 
formulated from different mechanisms, they share a common 
property of shift. As discussed in last section, the shift in PNS 
introduces the irregular sampling instants and thus generates 

irregular samples. For two-channel TEM, the integrator shifts 
introduce the time shifts in recording time points and then 
generate the irregular sequence (13). The difference is that the 
time shift in PNS is fixed while the shift in TEM is varying from 
one spiking time to next one. 

For the reconstruction, we consider the representation 
equation (6). First define two sequences  2 2s t t    

   for 
   and 1 1d d s s      

     for odd indexes  . The 
sequence  s  is the same as that by combining and ordering 

 (A) (A) (A)
1 2k k ks t t   and  (B) (B) (B)

1 2k k ks t t  . The sequence 
 d
  represents the time delay of TEM B behind TEM A 

between spiking times k  and 1k  . Then from two sequences 
defined by (12) and (13), as in (5), we have the  representation 
of  x t

 
as 
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   (15) 

where  c  are coefficients to be determined and  BP, ,g t d  is 
defined as in (8). Following the same line as in last section, we 
have 
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Then by (13), we get 
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from which a matrix equation Gc q    can be established, 
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Then the coefficients  c  can be estimated as 
 c G qc 


   

   where G  is the pseudo-inverse of G . 

IV. SIMULATIONS 

Illustrative simulations are conducted for an amplitude-and-
phase modulated bandpass signal 

          1 1 0 2 22sin cos sinx t t t t t t       

with parameters 1 2 10rad sec   , 2 2 2.5rad sec    
and 0 2 50 rad sec   . It is seen from Fig. 4 that the signal is 
a bandpass signal with center frequency 50Hz and bandwidth 
30Hz , and is bounded by the amplitude 2. The bandwidth is 
chosen to be slightly larger than -3dB bandwidth and is 
convenient for the setting of TEM parameters. Both single-
channel TEM and two-channel TEM are simulated. For the 
single-channel case, the signal is taken as a bandlimited one with 
upper-edge radian frequency 2 65rad sec  . Letting 

LP
TEM 1 (2 65)T s  , 1   and 1b c  , the threshold can be 

set to be LP
TEM 2T  . Similarly, for two-channel TEM, letting 

BP
TEM 1 30T s , 1   and 1b c  , the threshold can be set to 
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be BP
TEM 2T  . In addition, 2 35rad secl   is used to 

calculate the interpolation function (9). 

The sampling and reconstruction are shown in Fig. 5 and Fig. 
6, respectively. It is seen that both one-channel and two-channel 
TEMs well reconstruct the input waveform. However, by 
comparing their spiking times, as expected, the two-channel 
TEM allows large TEM interval. 

V. CONCLUSIONS 

In this paper, we consider a sampling and reconstruction 
framework for bandpass signals by using two-channel IF-TEMs. 
The similarities between PNS and TEM are exploited and a 
reconstruction approach is proposed. Compared to single-
channel TEM for bandpasss signals, the multi-channel scheme 
allows large TEM interval and hence is convenient for 
implementations. Simulations demonstrate its feasibility and 
performance. 
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