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ABSTRACT

In this paper, we consider the problem of reconstructing 3D
objects from sampled 2D tomographic projections at un-
known angles. We consider 3D polyhedrons and we provide
a constructive solution to recover the 3D structure of the poly-
hedron and the projection directions. The proposed method is
based on the observation that the 2D projections are actually
signals with finite rate of innovation, and this allows us to
retrieve the locations of the projected vertices using Prony’s
method. We are then able to unveil the 3D geometric infor-
mation of the projection directions, as well as the structure of
the polyhedron with an algebraic approach. The reconstruc-
tion method can also be applied to 3D point source models
and is resilient to noise.

Index Terms— 3D tomography, polyhedron reconstruc-
tion, projection angle estimation, finite rate of innovation
(FRI), sampling theory

1. INTRODUCTION

The problem of reconstructing a 3D structure from its 2D pro-
jections at unknown angles has gained a lot of prominence
over the last two decades as it appears in a host of applica-
tions that range from biomedical imaging [1, 2, 3] and geo-
physical imaging [4] to industrial radiography [5]. In partic-
ular, single-particle cryo-electron microscopy has been inten-
sively studied in the past decades for its ability to reconstruct
high-resolution 3D structures of macro molecules from noisy
2D tomographic projections at unknown view angles without
crystallization [1, 6, 7].

Much of the current research targeting this problem can
be divided into two main categories. In the first category,
the projection directions are first estimated using approaches
such as common-line methods [8] or moment-based methods
[9, 10, 11]. The 3D structure is then recovered by invert-
ing the operation of projection [12]. The estimation is fur-
ther refined through projection matching [13] or expectation
maximization based methods [14]. These approaches can be
computationally demanding, and high order statistics may be
required, which leads to low resilience to noise. In the sec-
ond category, the reconstruction of the 3D structure relies on

the estimation of rotational-invariant features from the pro-
jections [15, 16, 17]. Normally a good estimation of these
features requires a huge number of projections, and there is
no constructive proof for the minimum number of projections
required.

In this paper, we address the fundamental sampling ques-
tion of when the perfect reconstruction of the 3D structure can
be achieved from a set of samples of its 2D projections. To do
this, we incorporate sparsity in the signal model considered.
Specifically, we consider the 3D tomography problem for spe-
cific classes of signals, bilevel convex polyhedron models and
point source models, for which we provide a constructive so-
lution to the perfect reconstruction of the 3D structure, as well
as the estimation of projection angles, up to an orthogonal
transformation.

The key insight of our proposed framework is that the
tomographic projection of the convex polyhedron model is
piecewise linear with convex polygonal boundaries, which
can be regarded as a signal with finite rate of innovation (FRI)
[18, 19]. This allows us to retrieve the vertices of the polygo-
nal boundaries using Prony’s method [18]. We then adopt an
approach similar in spirit to [20] to perform reconstruction of
both the 3D structure and the projection directions.

This paper is organized as follows. In Section 2, we for-
mulate the problem. In Section 3, we present our estimation
algorithm, which is composed of 1) retrieval of 2D parameters
and 2) simultaneous estimation of the projection directions
and the 3D structure from 2D parameters. We then validate
our method with experiments done with synthetic data under
both noiseless and noisy settings in Section 4 and conclude in
Section 5.

2. PROBLEM FORMULATION

Let us consider the following 3D bilevel convex polyhedron
model:

g(r) =

{
1, for r inside Γ,

0, otherwise,
(1)

where Γ is the boundary surface of the polyhedron specified
by K vertices {Sk}Kk=1 in R3 space. We assume that all ver-
tices lie within a sphere region of known radius R centered at
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the origin, and that
∑K
k=1 Sk = 0. We consider a set of J to-

mographic projections of the 3D volume g(r) onto 2D planes
whose normal vectors are denoted as dj ∈ R3, j = 1, ..., J .
The 2D projection is inside a rectangular plane Πj of dimen-
sion (R1, R2) with R1, R2 ≥ 2R. The unit norm vectors
lj1 , lj2 ∈ R3 such that lj1 ⊥ lj2 , lj1 × lj2 = dj , are used to
denote the two directions of the plane Πj as shown in Fig. 1,
where × denotes the vector product. We further assume that
the center of the jth observation window deviates from the
projection of the origin Oj by ηj = [ηj1 , ηj2 ]

T .

Fig. 1: The bilevel convex polyhedron model g(r). The pro-
jection is taken onto the 2D plane Πj whose normal vector is
dj .

Using the above notations, the 2D projection Pj(x, y)
within the observation window can be expressed as:

Pj(x, y) =
∫
B3

g(r)δ(x− rT lj1 − ηj1)δ(y− rT lj2 − ηj2)dr,

(2)
where B3 is the ball region of radius R on R3. We assume the
signal Pj(x, y) is filtered with a 2D sampling kernel φ(x, y)
and uniformly sampled. Therefore, we observe

Pj [m,n] = ⟨Pj(x, y), φ(x−mT1, y − nT2)⟩, (3)

where m,n ∈ N, T1, T2 are the uniform sampling periods,
and ⟨·, ·⟩ denotes the inner product. We assume T1 = T2
without loss of generality.

The problem we want to solve is the simultaneous estima-
tion of the shape of the convex polyhedron g(r), the direction
vectors {dj}Jj=1 and the unknown shifts {ηj}Jj=1. We notice
that the shape of g(r) is completely specified by the locations
of the vertices {Sk}Kk=1, therefore, estimating g(r) is equiva-
lent to estimating the locations of its vertices.

Since convexity is preserved through projection, Pj(x, y)
is actually piecewise linear with convex polygonal boundaries
as shown in Fig. 2, where parts of the vertices correspond to
the projection of {Sk}Kk=1. As evident from (2), the projected
location of Sk onto the plane Πj can be written as:

Pk,j = [STk lj1 − ηj1 ,S
T
k lj2 − ηj2 ]

T . (4)

As we shall explain later, the exact estimation of Pk,j is es-
sential to the reconstruction method.

(a) Projection data Pj(x, y). (b) The differentiated projec-
tion data ∂xPj(x, y).

Fig. 2: An example of the projection data and its partial
derivative. Note that in (b), the point C comes from the inter-
section of two edges.

3. RECONSTRUCTING METHOD

Under the assumptions we have made in the previous section,
we can state the following result:
Proposition 1. Let g(r) ∈ R3 be a convex polyhedron with
K ≥ 5 vertices. If the projections are taken on J ≥ 6 un-
known 2D planes with non-coplanar normal vectors, the in-
plane shifts {ηj}Jj=1, the model g(r) and the normal vectors
of the unknown planes {dj}Jj=1 can be estimated, and for the
latter two the estimation is up to an orthogonal transforma-
tion.
Proof. As we mentioned above, the retrieval of locations of
vertices and direction vectors rely on the exact estimation of
projected locations of vertices. Therefore, we first show how
to estimate the parameters Pk,j . We then show how to simul-
taneously retrieve the 3D direction vectors dj , as well as the
locations of the vertices Sk using the estimated parameters.

The projection data Pj(x, y) is composed of H disjoint
piecewise linear convex polygons as shown in Fig.2 (a), there-
fore, its partial derivatives ∂xPj(x, y) and ∂yPj(x, y) contain
H piecewise constantLh-sided convex polygonsAh with am-
plitudes ah, as shown in Fig.2(b). The vertices of each patch
Ah are denoted in the complex plane in counter clockwise se-
quence as zh,l = xh,l + iyh,l, where l = 1, ..., Lh. We can
then leverage Davis’s theorem [21] and write the following
equation for each polygonal closure Ah:

∫ ∫
Ah

∂xPj(x, y)f ′′(z)dxdy = ah

Lh∑
l=1

ρh,lf(zh,l), (5)

where f(z) can be any regular function and ρh,l = i
2 (
z̄h,l−1−z̄h,l

zh,l−1−zh,l
−

z̄h,l−z̄h,l+1

zh,l−zh,l+1
). Since the polygon closures do not overlap, we

can further compute the above integral on the whole observa-
tion window as follows:∫ ∫

Πj

∂xPj(x, y)f ′′(z)dxdy =

H∑
h=1

ah

Lh∑
l=1

ρh,lf(zh,l).

(6)
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It can be proved that the coefficients of the polygon vertices
that come from the intersection of two edges of the polyhe-
dron will vanish, while only the ones corresponding to the
projection of the vertices of the polyhedron will remain 1. If
we further choose f(z) = zn, Eq. (6) can be written as a
power sum series of the projected locations of the polyhedron:

K∑
k=1

λk,jz
n
k,j =

∫ ∫
Πj

∂xPj(x, y)(zn)′′dxdy

= n(n− 1)

∫ ∫
Πj

∂xPj(x, y)(x+ iy)n−2dxdy

= n(n− 1)τn−2 = τ̂n, (7)

where zk,j corresponds to Pk,j in the complex plane and τn
is the simple complex moment. It is clear that τ̂n are the lin-
ear combinations of exponentials of znk,j , thus, we can apply
Prony’s method [18, 22] to retrieve theK locations zk,j given
2K weighted complex moments, or equivalently, 2K−2 sim-
ple complex moments. Now the question has become how to
obtain the complex moments τn from samples of the projec-
tion data Pj [m,n].

We make the connection by assuming the sampling kernel
φ(x, y) is a 2D polynomial reproducing kernel that can repro-
duce polynomials xαyβ , 0 ≤ α, β ≤ 2K − 3, which is to say
there exist some proper coefficients cα,βm,n such that:∑
m,n

cα,βm,nφ(x−m, y−n) = xαyβ , 0 ≤ α, β ≤ 2K− 3, (8)

where T1 = T2 = 1 is assumed here. We take the finite dif-
ferences of the samples Zj [m,n] = Pj [m+1, n]−Pj [m,n]:

Zj [m,n] = ⟨Pj(x, y), φ(x−m− 1, y − n)− φ(x−m, y − n)⟩
(a)
= ⟨Pj(x, y),−∂x(φ(x−m, y − n) ∗ β0

x(x−m))⟩
= ⟨∂xPj(x, y), φ(x−m, y − n) ∗ β0

x(x−m)︸ ︷︷ ︸
ψ(x−m,y−n)

⟩,

where (a) can be derived using integration by parts, and β0
x

denotes the box function along x direction. It can be shown
that, ψ(x, y) is able to reproduce polynomial up to degree
x2K−2y2K−3 with some coefficients bα,βm,n [19], therefore:∑

m,n

bα,βm,nZj [m,n]

=
∑
m,n

bα,βm,n⟨∂xPj(x, y), ψ(x−m, y − n)⟩

=

∫
Πj

∂xPj(x, y)
∑
m,n

bα,βm,nψ(x−m, y − n)dxdy

=

∫
Πj

∂xPj(x, y)xαyβdxdy = µα,β ,

1We omit this derivation due to lack of space.

where µα,β are the geometric moments of ∂xPj(x, y), and
they relate to the simple complex moments by:

τn =

n∑
β=0

(
n

β

)
iβµα,β , α+ β = n. (9)

We have shown above how to use samples Pj [m,n] to
obtain the weighted complex moments τ̂n, from which the
parameters Pk,j are retrieved using Prony’s method. Next we
show that by using an approach similar to the one introduced
in our previous work [20], we can simultaneously retrieve the
unknown shifts {ηj}Jj=1, direction vectors {dj}Jj=1, as well
as the locations of the vertices {Sk}Kk=1.

We can solve for the unknown shifts ηj by summing the
retrieved parameters for all vertices on one projection:

K∑
k=1

Pvk,j = (

K∑
k=1

STk )ljv −Kηjv
(b)
= −Kηjv ,

where v = 1, 2, and (b) follows from the assumption that∑K
k=1 Sk = 0.
If the parameters Pk,j are paired correctly across different

projections, that is, if we can decide whether two parameters
Pk,j and Pk′,i on two different projections correspond to the
same vertex, we can then build the following matrix with ele-
ments Ω1(k, j) = P1

k,j − P1
k−1,j = (Sk − Sk−1)

T lj1 :

Ω1 =


S2 − S1

S3 − S2

...
SK − SK−1


T

︸ ︷︷ ︸
(K−1)×3

[
l11 l21 . . . lJ1

]︸ ︷︷ ︸
3×J

:= S1C1.

(10)

Similarly, we can build another difference matrix Ω2 =
S2C2 with entries Ω2(k, j) = (Sk − Sk−1)

T lj2 . Under the
assumption that there are K ≥ 5 vertices and J ≥ 4 non-
coplanar direction vectors, the matrices Ω1 and Ω2 are rank
deficient with rank(Ω1) = rank(Ω2) = 3. The rank defi-
ciency property is enforced to allow the correct pairing of the
parameters which can be done in a pairwise manner. Specif-
ically, we can extract two columns Γ1,Γ2 from Ω1,Ω2 re-
spectively with the same column indices, and form a com-
bined pairwise difference matrix Γ = [Γ1,Γ2]. By permutat-
ing the sequence of vertices on one projection, the matrix with
rank(Γ)= 3 will yield the correct pairing. In case of noise, we
look for the matrix with the maximum ratio between the third
and the forth singular values.

As in our previous paper [20] we obtain the first esti-
mate of the direction vectors C̃1, C̃2 by performing singular
value decomposition on the difference matrices. Obviously
QC̃v = Cv, v = 1, 2, where Q is a 3 × 3 matrix. We
notice that C1,C2 have unit norm columns, thus, we solve
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 3: The ground truth of the polyhedron and direction vectors is shown in (a). In noiseless cases, uniform samples are taken
as shown in (b), and the estimation is exact up to an orthogonal transformation as shown in (d). If we assume that three direction
vectors are known, this ambiguity can be eliminated and perfect reconstruction can be achieved as in (e). In case the samples
are corrupted with noise of SNR = 15dB as in (c), we infer parameters with a deep neural network and the reconstruction for
J = 6 projections is shown in (f) after further aligning with Procrustes analysis. The reconstruction can be further improved
with more projections as shown in (g) with J = 20 projections.

for Q by enforcing l̃
T

jvMl̃jv = 1, where M = QTQ is a
3 × 3 symmetric matrix, and can be determined given there
are J ≥ 6 projection directions. Consequently, Q is given by
Q = B(M)

1
2 , where B is an arbitrary orthogonal matrix.

Once the direction vectors and the unknown shifts are re-
trieved, the estimation of the vertices is addressed by solving
the linear system of equations in Eq. (4).

Finally, given the vertices {Sk}Kk=1 the reconstruction of
g(r) is unique due to the convexity assumption. □
Remark. The above estimation algorithm can be applied to
the estimation of 3D point sources. The locations and ampli-
tudes of the projected 2D Diracs can be perfectly retrieved us-
ing techniques in the area of finite rate of innovation [23, 24].
Given the assumptions as in Proposition 1, the directions and
locations of point sources can be estimated up to an orthogo-
nal transformation using the same approach.

4. NUMERICAL RESULTS

We consider the model g(r) composed of K = 5 vertices in
the sphere region of radius R = 2, and the projections are
taken at J = 6 non-coplanar directions. The samples are
taken uniformly with 2D B-spline of order 12 along both x
and y directions at sampling period T1 = T2 = 1

26 as shown
in Fig. 3 (b). The result in Fig. 3 (d) shows that the recon-

struction of the polyhedron and projection directions using
the proposed method are exact up to an orthogonal transfor-
mation when compared to the ground truth in Fig. 3 (a). If we
assume that three directions are known, the ambiguity can be
eliminated and the estimation is exact as shown in Fig. 3 (e).

In practical scenarios, the 2D samples of projections may
be corrupted by noise, which leads to errors in the estimation
of parameters Pk,j , and consequently in the estimation of the
3D structure and projection directions. In this case, we infer
the parameters Pk,j directly from the noisy samples Pj [m,n]
using a carefully designed deep neural network. Given the es-
timated parameters Pk,j we form the difference matrix in Eq.
(10) and retrieve the locations and directions. For compari-
son, we then use Procrustes analysis [25] to estimate a linear
transformation between the estimated and true locations of
vertices. Fig. 3 (c) shows the corrupted samples with additive
white Gaussian noise of SNR = 15dB. The reconstruction re-
sult is shown in Fig. 3 (f) where the average squared error
of the locations of vertices is ϵ = 8.67 × 10−2. In addition,
by increasing the number J of projections to J = 20 projec-
tions, we reduce the error to only ϵ = 1.32 × 10−2, see Fig.
3(g). For different noise levels, we repeat 500 experiments
with randomly generated convex polyhedra with 5 vertices.
In Table. 1 we report the average squared error for the esti-
mated vertices reconstructed from 6 projections.
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SNR (dB) 15 20 25
Average squared error ϵ 9.21× 10−2 3.83× 10−2 5.24× 10−3

Table 1: Average squared error of estimated vertices reconstructed from 6 unknown projections. The results are averaged over
500 experiments with randomly generated polyhedra with 5 vertices.

5. CONCLUSION

In this work, we presented a method to simultaneously re-
cover the 3D structure of the convex polyhedron model from
uniform samples of 2D projections at unknown angles. Sim-
ulations performed on synthetic data validate the proposed
method. In noisy settings, we robustify the approach by in-
creasing the number of projections and by using a deep net-
work to estimate the locations of the vertices on each projec-
tion.
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