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Abstract—Over the past decade, spline adaptive filtering (SAF)
has attracted much attention in nonlinear signal processing. In
this paper, we investigate the WL complex-valued SAF (WL-
CSAF) algorithm in the complex domain based on the cascaded
architecture combining a widely linear (WL) model and a non-
linear look-up table (LUT), which is capable of exploiting the full
second-order information of signals. Moreover, the steady-state
mean square error (MSE) is analyzed to provide insights into
the theoretical behavior of the WL-CSAF algorithm. Simulations
of nonlinear system identification scenarios demonstrate the
superiority of WL-CSAF against known algorithms, and validate
the accuracy of the theoretical predictions.

Index Terms—complex domain, mean-square error, nonlinear
filtering, spline adaptive filter, widely linear

I. INTRODUCTION

Adaptive filtering algorithms are widely used for online
learning in the field of signal processing. They have received
considerable critical attention in a variety of applications, such
as beamforming [1], frequency estimation in power systems
[2], wind profile prediction [3], underwater acoustic systems
[4], etc.

In recent years, spline adaptive filtering (SAF) has become
very popular within the field of nonlinear filtering due to
its simplicity [5]. Spline is a polynomial-based method that
minimizes a smoothness penalty, which is different from the
probability-based Gaussian process that specifies a covariance
function [6]. The architecture of SAF is comprised of the com-
bination of a finite impulse response (FIR) filter and a spline-
interpolated adaptable look-up table (LUT). Therefore, SAF is
actually a cascade model also known as linear-nonlinear (LN)
block-oriented model. In [7], the authors analyzed the steady-
state performance of the SAF algorithm. In [8], the generalized
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spline nonlinear adaptive filter (GSNAF) was designed for
multiple-input and multiple-output scenarios. In [9], an interval
variable step-size (IVSS) scheme was proposed for SAF to
speed up the algorithm convergence in the block-oriented
system identification. To combat impulsive noise, some robust
SAF algorithms [10]–[12] have also been investigated. In
[13], the frequency domain spline adaptive filter (FDSAF)
was proposed to improve the computing efficiency. So far,
there is scarce literature studying complex-valued SAF besides
[14], where Campo et al. proposed the spline-based model
for complex I/Q signals in the context of nonlinear radio
communication systems.

In this paper, based on the cascaded architecture combining
a widely linear (WL) model and a nonlinear LUT, we inves-
tigate the WL complex-valued SAF algorithm (WL-CSAF),
which is capable of exploiting the full second-order informa-
tion of signals. As the WL model is an augmented variant
of the strictly linear (SL) model, the WL-CSAF algorithm
can be easily transformed into the SL complex-valued SAF
(SL-CSAF) algorithm as long as the WL model reduces to
the SL model. The steady-state mean-square error (MSE)
behavior of WL-CSAF is theoretically analyzed. Simulations
in a nonlinear system identification scenario are conducted to
test the performance of the proposed WL-CSAF algorithm. It
is shown to outperform the SL-CSAF, complex-valued LMS
(CLMS) [15] and WL-CLMS [16] algorithms. The presented
theoretical analysis is verified to provide accurate prediction
results.

Notation: Boldface letters denote vectors and matrices.
Superscripts (·)∗, (·)T , and (·)H are complex conjugate, trans-
pose, and Hermitian transpose, respectively. The symbols | · |
and ∥ · ∥2 stand for the absolute operator and Euclidean norm,
respectively. The symbols Re{·} and ˙(·) denote the real part
and the derivative, respectively.
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II. PRINCIPLES OF SPLINE INTERPOLATION

In this section, we introduce the model adopted, review real-
valued spline interpolation and the design of WL complex-
valued spline interpolation.

A. Review of Real-valued Spline Interpolation

Spline interpolation based on low-order piece-wise polyno-
mials is a commonly used interpolation scheme capable of
providing high approximation accuracy at lower complexity
compared to other schemes [17]. It allows interpolation be-
tween an arbitrary set of points, called knots, also known as
control points.

The construction of the piece-wise model starts by defining
a set of knots Qi = [qx,i, qy,i]

T for i = 0, 1, · · · , Q, on the
plane x — y. The abscissa sequence {qx,i} is required to be
constrained as: qx,0 < qx,1 < · · · < qx,Q [18]. We consider
the uniform sampling of the abscissa, since it allows for a
simple input-output relation [5], [14], and the region width is
defined as ∆x = qx,i+1–qx,i. Given a suitable spline degree
P , the spline segment for each region, [qx,i, qx,i+1), is defined
as an affine combination of P +1 spline curves, and the P th-
degree spline basis function is expressed by the Cox-deBoor
recursion [19]

NP
i (u) =

u− qx,i
qx,i+P − qx,i

NP−1
i (u)

+
qx,i+P+1 − u

qx,i+P+1 − qx,i+1
NP−1

i+1 (u),
(1)

where i = 0, 1, · · · , Q − P − 1, and the 0th-degree basis
function takes the form

N0
i (u) =

{
1, qx,i ≤ u ≤ qx,i+1

0, otherwise.
(2)

The basis functions NP
i for different regions are shifted

from each other, i.e.,

NP
i (u) = NP

0 (u− i∆x). (3)

The spline segment in an arbitrary region is given by

φi(u) =

i−1∑
k=i−P−1

qx,kN
P
k (u), (4)

where φi(u) is a P th-degree local polynomial. By substituting
(1) into (4), the local polynomial can be obtained as

φi(u) = uTCqi, (5)

where u = [uP , uP−1, · · · , u, 1]T is a vector with u being
the normalized abscissa value between two knots, C is a
predefined spline basis matrix of size (P + 1) × (P + 1),
and qi = [qi, qi+1, · · · , qi+P ]

T contains y-axes control points
qi = qy,i. In this paper, we consider utilizing an important and
widespread spline basis matrix termed as cubic Catmul-Rom

(CR)-spline basis matrix that enables a local approximation
[20], which is defined as

C =
1

2


−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

. (6)

B. Design of WL Complex-valued Spline Interpolation

Motivated by the WL model, s[n] is originated from:

s[n] = hT
nx

∗
n︸ ︷︷ ︸

sh[n]

+gT
nxn︸ ︷︷ ︸
sg [n]

, (7)

where hn and gn are the filter weight vectors. With this in
mind, for sh[n] and sg[n], the WL SAF calculates indepen-
dently the local parameter and span index:

uh,n =
|sh[n]|
∆x

−
⌊
|sh[n]|
∆x

⌋
, ih,n =

⌊
|sh[n]|
∆x

⌋
+

Q− 1

2
,

(8)

ug,n =
|sg[n]|
∆x

−
⌊
|sg[n]|
∆x

⌋
, ig,n =

⌊
|sg[n]|
∆x

⌋
+

Q− 1

2
.

(9)
The filter output is composed of two components, yh[n] and

yg[n], defined from

y[n] = uT
h,nCqh,i,n︸ ︷︷ ︸

yh[n]

+uT
g,nCqg,i,n︸ ︷︷ ︸

yg [n]

, (10)

where uh,n, ug,n and qh,i,n, qg,i,n are the instantaneous
realizations of u and qi at time instant n.

III. PROPOSED WL-CSAF ALGORITHM

A. Learning Rules of the WL-CSAF Algorithm

The cost function of the adaptive filter is defined as

J(hn,gn,qh,i,n,qg,i,n) = e[n]e∗[n], (11)

where e[n] = d[n] − y[n]. In order to derive the WL-CSAF
algorithm we minimize the cost function in (11) using gradient
descent optimization with respect to the filter weight vectors.
We first consider the learning rule for hn that is described by

hn+1 = hn − µh,a ▽hn J(hn,gn,qh,i,n,qg,i,n), (12)

where µh,a is the step-size. Since the maximum change of
a real-valued cost function of complex variables is in the
direction of the conjugate gradient, by invoking Wirtinger
Calculus [21], the partial derivative is computed as

∂J(hn,gn,qh,i,n,qg,i,n)

∂h∗
n

= e[n]
∂e∗[n]

∂h∗
n︸ ︷︷ ︸

Ωh,1

+e∗[n]
∂e[n]

∂h∗
n︸ ︷︷ ︸

Ωh,2

,

(13)
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where

Ωh,1 = −∂y∗WL[n]

∂h∗
n

= −∂y∗h[n]

∂h∗
n

= −
[
∂y∗h[n]

∂uh,n

∂uh,n

∂s∗h[n]

∂s∗h[n]

∂h∗
n

+
∂y∗h[n]

∂uh,n

∂uh,n

∂sh[n]

∂sh[n]

∂h∗
n

]
= − 1

2∆x

sh[n]

|sh[n]|
u̇T
h,nCq∗

h,i,nxn,

(14)
and

Ωh,2 = −∂yWL[n]

∂h∗
n

= −∂yh[n]

∂h∗
n

= −
[
∂yh[n]

∂uh,n

∂uh,n

∂s∗h[n]

∂s∗h[n]

∂h∗
n

+
∂yh[n]

∂uh,n

∂uh,n

∂sh[n]

∂sh[n]

∂h∗
n

]
= − 1

2∆x

sh[n]

|sh[n]|
u̇T
h,nCqh,i,nxn.

(15)
Substituting (14) and (15) into (13) gives rise to

∂J(hn,gn,qh,i,n,qg,i,n)

∂h∗
n

= − 1

2∆x

sh[n]

|sh[n]|
e[n]u̇T

h,nCqh,i,nxn

− 1

2∆x

sh[n]

|sh[n]|
e∗[n]u̇T

h,nCq∗
h,i,nxn

= − 1

∆x

sh[n]

|sh[n]|
xnRe{e[n]u̇T

h,nCq∗
h,i,n}.

(16)

Therefore, the update of hn is given by

hn+1 = hn +
µh,a

∆x

sh[n]

|sh[n]|
xnRe{e[n]u̇T

h,nCq∗
h,i,n}. (17)

Following a similar derivation, the update of gn takes the form

gn+1 = gn +
µg,a

∆x

sg[n]

|sg[n]|
x∗
nRe{e[n]u̇T

g,nCq∗
g,i,n}, (18)

where µg,a is the step-size.
We then obtain the learning rules for both qh,i,n and qg,i,n:

qh,i,n+1 = qh,i,n + µq,ae[n]C
Tuh,n, (19)

qg,i,n+1 = qg,i,n + µq,ae[n]C
Tug,n, (20)

where µq,a is the step-size. The proposed WL-CSAF algorithm
is summarized in Table I.

B. Computational Complexity

The complexity of the WL-CSAF algorithm is shown in
Table II, where multiplications and additions per iteration are
counted. In total, the WL-CSAF algorithm requires 4M +
6P 2 + 18P + 20 multiplications and 4M + 6P 2 + 12P + 2
additions.

TABLE I
SUMMARY OF THE WL-CSAF ALGORITHM

Initialization: h0, g0, qh,i,0, qg,i,0

for n = 0, 1, · · · do
sWL[n] = hT

nx∗
n + gT

nxn

uh,n =
|sh[n]|

∆x −
⌊

|sh[n]|
∆x

⌋
, ih,n =

⌊
|sh[n]|

∆x

⌋
+ Q−1

2

ug,n =
|sg [n]|

∆x −
⌊

|sg [n]|
∆x

⌋
, ig,n =

⌊
|sg [n]|

∆x

⌋
+ Q−1

2

yWL[n] = uT
h,nCqh,i,n + uT

g,nCqg,i,n

e[n] = d[n] − yWL[n]

hn+1 = hn +
µh,a
∆x

sh[n]

|sh[n]|xnRe{e[n]u̇T
h,nCq∗

h,i,n}

gn+1 = gn +
µg,a
∆x

sg [n]

|sg [n]|x
∗
nRe{e[n]u̇T

g,nCq∗
g,i,n}

qh,i,n+1 = qh,i,n + µq,ae[n]C
Tuh,n

qg,i,n+1 = qg,i,n + µq,ae[n]C
Tug,n

end for

IV. STEADY-STATE MSE OF WL-CSAF

To make the subsequent analysis mathematically tractable,
we introduce the following assumptions:

A1: The noise v[n] is zero-mean with variance σ2
v , indepen-

dent of xn, qh,i,n and qg,i,n.
A2: In the steady-state, the error signal is independent of

xn, CTuh,n and CTug,n.
Assumption A1 is widely used in adaptive filtering [22]–

[24]. Assumption A2 has been shown to significantly simplify
the analysis and provide good prediction [7], [9]. The desired
signal d[n] in the WL-CSAF is modeled by

d[n] = uT
h,nCqh,o + uT

g,nCqg,o + v[n], (21)

where qh,o and qg,o denote the control points of the unknown
system, and v[n] is the white noise. Using (21) and (10), the
error signal in (15) is written as

e[n] = uT
h,nCq̃h,i,n(n) + uT

g,nCq̃g,i,n(n) + v(n), (22)

where q̃h,i,n(n) = qh,o − qh,i,n and q̃g,i,n(n) = qg,o −
qg,i,n. By defining the augmented control point error vector
q̃a,i,n = [q̃T

h,i,n(n), q̃
T
g,i,n(n)]

T , (19) and (20) can be jointly
transformed into

q̃a,i,n+1 = q̃a,i,n − µq,ae[n]C
T
a ua,n, (23)

where ua,n = [uT
h,n,u

T
g,n]

T , and

Ca =

[
CT 0
0 CT

]T
. (24)

Squaring (23) results in

∥q̃a,i,n+1∥2

=
{
q̃a,i,n − µq,ae[n]C

T
a ua,n

}H {
q̃a,i,n − µq,ae[n]C

T
a ua,n

}
= ∥q̃a,i,n∥2 − µq,a

(
e[n]q̃H

a,i,nC
T
a ua,n + e∗[n]uT

a,nCaq̃a,i,n

)
+ µ2

q,ae
2[n]∥CT

a ua,n∥2.
(25)

Taking the expectation of (25) and using E∥q̃a,i,n+1∥2 =
E∥q̃a,i,n∥2 in the steady-state, we arrive at

E
{
e[n]q̃H

a,i,nC
T
a ua,n + e∗[n]uT

a,nCaq̃a,i,n

}
= µq,aE

{
e2[n]∥CT

a ua,n∥2
}
.

(26)
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TABLE II
COMPUTATIONAL COMPLEXITY OF WL-CSAF

WL-CSAF
− multiplications additions

swl[n] 2M 2M − 1
ywl[n] 2P 2 + 6P + 4 2P 2 + 4P + 1
total 2M + 2P 2 + 6P + 4 2M + 2P 2 + 4P

wa,n+1 2M + 2P 2 + 6P + 10 2M + 2P 2 + 4P
qa,i,n+1 2P 2 + 6P + 6 2P 2 + 4P + 2

total 2M + 4P 2 + 12P + 16 2M + 4P 2 + 8P + 2

Total 4M + 6P 2 + 18P + 20 4M + 6P 2 + 12P + 2

Utilizing (22) and Assumption A1, the left hand side of (26)
can be further transformed into

E{(e[n]− v[n])∗e[n] + e∗[n](e[n]− v[n])} = 2E{e2[n]− σ2
v}.

(27)
Therefore, we obtain

2E{e2[n]− σ2
v} = µq,aE

{
e2[n]∥CT

a ua,n∥2
}
. (28)

Applying Assumption A2 to (28), we finally obtain

MSE = E{e2[n]} =
2σ2

v

2− µq,aE∥CT
a ua,n∥2

, (29)

where E∥CT
a ua,n∥2 is given by

E∥CT
a ua,n∥2 = E∥CTuh,n∥2 + E∥CTug,n∥2. (30)

The expectation values of E∥CTuh,n∥2 and E∥CTug,n∥2 can
be obtained from the ensemble average in the simulation trials.

V. SIMULATION
In this section, we will verify the performance of the WL-

CSAF algorithm, as well as validate the theoretical analysis
in system identification scenarios. Similar to [5], the unknown
system is composed of a linear component wo = [0.6 −
0.6j,−0.4 + 0.4j, 0.25 − 0.25j,−0.15 + 0.15j, 0.1 − 0.1j]T

with j =
√
−1 and a nonlinear memoryless target function

implemented by a 23-point length LUT qo, interpolated by a
uniform third degree spline with an interval sampling ∆x =
0.2, and defined as

qo = {−2.2,−2, · · · , 0.8,−0.91,−0.42,−0.01,−0.1,

0.1,−0.15, 0.58, 1.2, 1.0, · · · , 2.2} .
The input signal x[n] is generated as

x[n] = ax[n− 1] +
√

1− a2ξ[n], (31)

where ξ[n] is a zero-mean white Gaussian random sequence
and 0 ≤ a < 1 is a parameter that determines the level of
correlation between adjacent samples. The system output is
disturbed by an additive white Gaussian noise v[n]. The sim-
ulation results are obtained by averaging over 100 independent
trials. The noise which yields a certain signal to noise ratio
(SNR) is added, where SNR is defined as

SNR(dB) = 10 log 10

(
σ2
ξ

σ2
v

)
, (32)

with σ2
ξ and σ2

v denoting the variances of ξ[n] and v[n].
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Fig. 1. Comparison of the CLMS, WL-CLMS, SL-CSAF and WL-CSAF
algorithms. x[n] is generated by a noncircular signal ξ[n] with variance σ2

ξ =

1 and complementary variance σ̃2
ξ = 0.5, a = 0.95, (a) SNR=30dB. (b)

SNR=20dB.

In Fig. 1, we compare the WL-CSAF algorithm with CLMS
[21], WL-CLMS [2] and SL-CSAF for different SNRs. For the
CLMS and WL-CLMS algorithms, their step-sizes are set to
0.005. To ensure a fair comparison, the step-sizes for weight
vectors and control points are adjusted to ensure the same
steady-state MSE of the investigated algorithms. In the SL-
CSAF, step-sizes are set to µw = 0.001, µq = 0.005, while in
the WL-CSAF, step-sizes are set to µh,a = µg,a = 0.004,
µq,a = 0.005. It is seen that the WL-CSAF algorithm
outperforms the CLMS, WL-CLMS and SL-CSAF algorithms.

Fig. 2 shows the identification results of linear filter weights
of the WL-CSAF, where Re(linear filter weights) denotes the
real part of linear filter weights, while Im(linear filter weights)
denotes the imaginary part of linear filter weights. It is seen
that the proposed WL-CSAF algorithm can accurately predict
the true weight vector.

The simulated and theoretical steady-state MSE values of
the proposed WL-CSAF algorithm are presented in Fig. 3. The
theoretical steady-state MSE is calculated using (29) and (30).
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The step-sizes for weight vectors are set to µh,a = µg,a =
0.004. Fig. 2(a) shows the steady-state MSE versus the step-
size, while Fig. 2(b) shows the steady-state MSE versus SNR.
It is clear that the theoretical steady-state MSE values agree
well with the simulated values.
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Fig. 2. Identification results of linear filter weights. x[n] is generated by a
noncircular signal ξ[n] with variance σ2

ξ = 1 and complementary variance
σ̃2
ξ = 0.5, a = 0.95, SNR=30dB.
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Fig. 3. Simulated and theoretical steady-state MSE of the WL-CLMS
algorithm, x[n] is generated by a noncircular signal ξ[n] with variance σ2

ξ = 1

and complementary variance σ̃2
ξ = 0.5, a = 0.95. (a) Steady-state MSE

versus step-size µq , with SNR = 10dB. (b) Steady-state MSE versus SNR,
with µq,a = 0.05

VI. CONCLUSION

In this paper, we have proposed the WL-CSAF algorithm
for nonlinear adaptive filtering in the complex domain. The
proposed algorithm is based on a cascaded architecture com-
posed of a widely linear filter and a nonlinear LUT, which
is capable of exploiting the full second-order information
of signals. We have also carried out a theoretical analysis
for the WL-CSAF algorithm. Specifically, with some widely
used assumptions, the steady-state MSE has been analyzed.
Simulations in system identification scenarios verify the high
performance of the WL-CSAF algorithm, and validate the
accuracy of the theoretical analysis.
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