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Abstract—In restoring a large-scale image from incomplete
samples, one always introduces a blocking strategy to avoid a con-
siderable memory burden. Nevertheless, certain applications, like
medical imaging, reject to divide an image into patches. In this
paper, we derive a variant of ADMM algorithm, which induces
a non-convex optimization-based neural network architecture,
for large-scale image compressive sensing. In the literature, the
largest scale of natural images that can be reconstructed without
blocking strategy is around 256 × 256, whereas our method is
feasible for an image size as high as 1024 × 1024. In addition,
our method can obtain better reconstruction performance and
smaller model size than state-of-the-art methods using blocking
strategy.

I. INTRODUCTION

Compressive sensing (CS) [3], [9] has received considerable
attention in diverse fields, including natural image reconstruc-
tion [28], [29] and medical image reconstruction [2], [10],
[14], [16], [23], [26]. With the help of deep learning models,
CS is able to achieve real-time recovery.

Formally, let x0 ∈ Rn be the original signal and let Φ ∈
Rm×n be the sensing matrix, the CS encoding process can be
formulated as:

y = Φx0, (1)

where y ∈ Rm is the measurement vector. The ratio m
n ,

ranging from 0 to 1, is defined as the measurement rate (MR).
A challenging problem is compressive sensing of large-scale

images. Considering a large-scale image with the size of w×h
and its vectorization I0 ∈ Rw·h. We can see that the size
of corresponding sensing matrix Φ will be m × wh and the
memory storage cost of Φ is m · wh · 4 · 2−30 gigabytes,
provided that “float” is used. The memory cost required for
storing the sensing matrix Φ associated with different image
sizes is shown in Table I under the MR m

n = 10%.

TABLE I
MEMORY (IN GB) REQUIRED FOR STORING SENSING MATRIX Φ UNDER

DIFFERENT IMAGE SIZES.

Image Size Memory Size (GB)
256× 256 1.60
512× 512 25.6

1024× 1024 409.6
2048× 2048 6553.6

As indicated in Table I, the memory cost plus the derived
computation cost are often not affordable. For example, if
an ADMM-based algorithm [1] is adopted, its matrix-inverse
operator requires huge memory storage for storing the inverse
matrix. Besides, even the current learning-based methods
heavily rely on multiple or powerful graphics processing units
(GPUs) for training, it is still impracticable in some cases.
Therefore, the objective of this paper is to study this large-
scale compressive sensing problem.

Traditionally, we have two strategies for dealing with large-
scale CS problems. The first and most common one is divide-
and-conquer, also known as block-based CS (BCS) [12], [22].
BCS, however, does not meet the requirement of Magnetic
Resonance Imaging (MRI) [10], [14], [16], [23], [26].

The second strategy relies on the use of structured sensing
matrix (SRM) [7], which consists of three operators: a ran-
dom sampling operator (D), an orthonormal linear operator
(F ), and a uniform random permutation operator (R). SRM
allows the encoding process to operate without being explicitly
represented in a matrix form.

In this work, we study a highly lightweight neural network
for solving a large-scale CS problem. Main contributions of
this paper are as follows:

• Different from traditional ADMM that leads to a calcu-
lation of matrix inverse operator, we derive ADMM in a
different way to avoid matrix inverse operator.

• A non-convex ℓq-norm based convolutional neural net-
work, dubbed QADM-Net, is proposed. To the best of our
knowledge, QADM-Net is the first network architecture
that can reconstruct a 2D image of the size larger than
1024 × 1024 from its incomplete samples with a single
GPU without resorting to blocking strategy.

II. RELATED WORKS

Recent compressed sensing methods for natural image re-
construction are considered in deep learning-based paradigm
with convolutional neural network, which achieve outstanding
performance, compared to traditional iterative algorithms. The
network architectures for natural image reconstruction can
be classified into two categories: algorithm unrolling [20],
[26]–[29] and heuristic design [15], [18], [21], [24], [25].
The main difference between them is that algorithm unrolling
connects the network architecture with the traditional iterative
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algorithm, which implies the trained network is interpretable
[11], [19].

Nevertheless, all of the related studies commonly employ
the blocking strategy to avoid the requirement of impracticable
memory storage in a training process. For example, [15], [18],
[27], [28] divided an image into sub-images of 33× 33 pixels
and merged the individual reconstructed results into an inte-
grated one. [24], [25] first cut an image into multiple patches
of size 96 × 96 and further divided each patch into 9 sub-
images of size 32×32 for sensing. Under this setting, the GPU
memory consumes around 8 GB during training (including the
back-propagation process). It will become impracticable if an
image of size larger than 128×128 is directly sensing without
relying on the blocking strategy.

In general, an MR image has the size at least 128 × 128
(always 256 × 256 or larger) according to the scanned body
parts. Moreover, since data acquisition of an MR image is car-
ried out in k-space, which is an array of numbers representing
spatial frequencies in the MR image or the Fourier transform
of the MR image, we suffer from the unavailability of the
blocking strategy. This explains the need of a compressive
sensing method that can deal with large-scale images without
resorting to the blocking strategy.

III. PROPOSED METHOD

A. Problem Formulation

Let X0 ∈ Rn1×n2 be an image of size n1 × n2 and let
x0 ∈ Rn be its vector representation, where n = n1 · n2. In
order to reconstruct the original signal x0 from the available
measurement vector y, we consider the ℓq-norm minimization
problem (referred as (ℓq)-problem) in the form

min
x

F (x) =
1

2
∥y − Φx∥22 + λ ∥Ψx∥qq , (2)

where λ is a positive constant, 0 < q < 1, Ψ ∈ Rn×n is
a dictionary that allows x0 to be sparsely represented, and
∥x∥q =

∑n
i=1 (|xi|q)

1/q denotes the ℓq-norm. We adopt the
non-convex ℓq-norm instead of convex ℓ1-norm minimization
problem (refer as LASSO) because the (ℓq)-problem has better
reconstruction results under low measurement rates [4], [5].

It is noted that the discussions regarding an (ℓq)-problem
or effective algorithms to solve it are largely ignored in the
literature. In III-B, we first recall the traditional ADMM
algorithm, which leads to a matrix-inverse operator. We then
propose a modified version of ADMM algorithm in III-C to
prevent from suffering the high-computation cost and high ca-
pacity of matrix-inverse operator. After modifying the ADMM
algorithm, we finally propose an iterative algorithm to solve
problem (2), which is called QADM algorithm.

B. ADMM algorithm

In the traditional ADMM algorithm [1], Problem (2) can be
rewritten as a constrained minimization problem min

x,z

1

2
∥y − Φx∥22 + λ ∥z∥qq

s.t. z = Ψx.
(3)

After some derivations, the x-subproblem of ADMM algo-
rithm has the form:

xt+1 =
(
ΦTΦ+ βΨTΨ

)−1 (
ΦT y +ΨT ξt + βΨT zt

)
.

We observe that the solution to the x-subproblem involves
a matrix-inverse operator and at least one of the measurement
matrix Φ or the dictionary Ψ is a learning parameter. Under the
circumstance, we have to calculate a matrix-inverse operation
in each batch and in each iteration process. If the matrix
size is large enough, the computation cost is not affordable.
For example, if an image size is 64 × 64, the matrix size of(
ΦTΦ+ βΨTΨ

)
becomes 642 × 642 and the matrix-inverse

operation calculated by MATLAB platform with Intel Core i7-
7700K CPU needs 1.18 seconds. If the image size is 128×128,
it costs 36.29 seconds. Moreover, if an image size is 256×256,
the storage capacity of the matrix

(
ΦTΦ+ βΨTΨ

)
costs 32

GB in total (including the inverse matrix operator). It can be
seen that the ADMM algorithm is almost impracticable for
general devices such as mobile phone or laptop provided the
blocking strategy is not permitted for large images like MRI.

C. QADM algorithm

To reconstruct a large-scale image, we derive the ADMM
algorithm in the different way to avoid the matrix-inverse oper-
ator. The problem (2) can be reformulated into the constrained
minimization problem min

x,z

1

2
∥z∥22 + λ ∥Ψx∥qq

s.t. z = y − Φx
(4)

in that z replaces the measurement noise term y − Φx. This
indicates z is to control the error (or the measurement noise),
and Ψx is to control the sparsity in a specified domain. Then,
after some derivations, the ADMM procedure becomes

zt+1 = argmin
z

1

2
∥z∥22 + ξt

T
z

+
1

2
β ∥z − (y − Φxt)∥22

xt+1 = argmin
x

λ ∥Ψx∥qq + ξt
T
Φx

+
1

2
β
∥∥zt+1 − (y − Φx)

∥∥2
2

ξt+1 = ξt + β
[
zt+1 − (y − Φxt+1)

]
.

(5)

The iteration process in (5) consists of three parts: the z-
subproblem, the x-subproblem, and the dual variable updates.

To solve z-subproblem, because it is a convex minimiza-
tion problem, by Fermat’s theorem, we have zt+1 + ξt +
β
[
zt+1 − (y − Φxt)

]
= 0, which implies

zt+1 =
β

1 + β

(
(y − Φxt)− 1

β
ξt
)
. (6)

To solve x-subproblem, the objective function can be rewrit-
ten as

λ ∥Ψx∥qq +
1
2β

∥∥∥Φx−
(
y − zt+1 − 1

β ξ
t
)∥∥∥2

2
+ C1, (7)

where C1 is a constant.
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Because the minimum solution to Eq. (7) cannot be obtained
directly, we approximate (7) with a polynomial via the Taylor
series expansion. Let

f(x) = ∥Φx− σ∥22 ,

where σ = y − zt+1 − 1
β ξ

t. The Taylor series expansion of
f(x) at the point x̃ is

f(x) = ∥Φx̃− σ∥22 + 2
[
ΦT (Φx̃− σ)

]T
(x− x̃)

+2 (x− x̃)
T
ΦTΦ (x− x̃) .

(8)

Because f(x) is a second-degree polynomial, the reformula-
tion in Eq. (8) is exact, that is, the remainder is zero. Further,
the quadratic term in Eq. (8) has the upper bound

2 ∥Φ (x− x̃)∥22 ≤ τ ∥x− x̃∥22 , (9)

where τ = 2 ∥Φ∥2op, and ∥·∥op is an operator norm. Let

g(x) = ∥Φx̃− σ∥22 + 2
[
ΦT (Φx̃− σ)

]T
(x− x̃)

+τ ∥x− x̃∥22 .
(10)

Note that g(x) is an upper bound of f(x). Eq. (10) can be
reformulated as

g(x) = τ ∥x−M∥22 + C2, (11)

where both M = x̃− 1
τΦ

T (Φx̃− σ) and C2 are constants.
With the derivation of Eqs. (7), (8), and (11), the x-

subproblem in (5) can be approximated as

xt+1 ≈ argmin
x

λ ∥Ψx∥qq +
1
2βτ ∥x−M∥22 . (12)

The optimal solution to problem (12) is approximated as

xt+1 = M +
1

γ
ΨT

[
η

(
(ΨM)i ;

γ

βτ
w

)
−ΨM

]
, (13)

where wi =
λ

(|ΨM |+εi)
1−q > 0 and γ is a constant.

From Eqs. (6) and (13), the iteration process (5) can be
written as

zt+1 =
β

1 + β

(
(y − Φxt)− 1

β ξ
t
)

xt+1 = M + 1
γΨ

T
[
η
(
ΨM ; γ

βτw
)
−ΨM

]
ξt+1 = ξt + β

[
zt+1 − (y − Φxt+1)

]
,

(14)

where wi = λ

(|(ΨM)i|+εi)
1−q , ∀i, and M = x̃ −

1
τA

T
(
Ax̃− y + zt+1 + 1

β ξ
t
)

.

D. QADM-Net

To speedup reconstruction, we design a DNN architecture
based on the QADM algorithm (14). First, we consider the
dictionary Ψ as a convolutional neural network, as described
in Sec. III-D1. Second, we unroll the specific parameters in
(14), as described in Sec. III-D2. Moreover, to operate the
network architecture in a large-scale setting, the structurally
random matrix is adopted and discussed in Sec. III-D3.

1) Dictionary as Convolutional Neural Network: To re-
cover the image X0 via solving the optimization problem
(2), Ψ plays the role of a dictionary in providing an image
a sparse representation. Ψ is generally treated as an over-
complete dictionary (i.e., Ψ ∈ RN×n with N > n) to achieve
better representation. However, as N > n, Ψ ◦ ΨT = γcIN
is not satisfied at all [19]. Thus, it is necessary to choose
a Ψ† satisfying Ψ ◦ Ψ† ≈ γIN to replace ΨT . Following
our previous study [19], the left inverse of Ψ exists, i.e.,
Ψ̃ =

(
ΨT ◦Ψ

)−1 ◦ΨT and Ψ̃ ◦Ψ = In. Then, we have

Ψ† = In ◦Ψ† =
(
Ψ̃ ◦Ψ

)
◦Ψ†

= Ψ̃ ◦
(
Ψ ◦Ψ†) ≈ Ψ̃ ◦ γIN = γΨ̃,

(15)

and further approximate the solution (13) as

xt+1 = M + γ̄Ψ̃t

[
η

(
ΨtM ;

γ

βτ
w

)
−ΨtM

]
. (16)

Inspired by the representation power of CNN [8] and the
design of NN architecture [27], dictionary Ψt is adopted as

Ψt = Ct
2 ◦ ReLU ◦ Ct

1, (17)

where all Ct
1 and Ct

2 are convolutional operators, and ReLU and
is a rectified linear unit. To exhibit a “left-inverse” structure
of Ψt, the Ψ̃t in Eq. (16) is adopted as

Ψ̃t = Ct
4 ◦ ReLU ◦ Ct

3, (18)

which has the same structure as that in Eq. (17). All Ct
3 and

Ct
4 are convolutional operators. Based on the relaxation 1

γΨ =

γ̄Ψ̃, we will present a loss function appropriately to ensure
the left-inverse relation between Ψt and Ψ̃t in Sec. III-D4.

2) Parameter Unrolling: We describe how to unroll pa-
rameters in an NN model. After plugging Eq. (16) into (14),
the NN architecture is constructed by unrolling the specific
parameters at tth (0 ≤ t < T ) layer as

zt+1 = βz1 ((y − Φxt)− βz2ξ
t)

M t+1 = xt − βM1Φ
T
(
Φxt − y + zt+1 + βM2ξ

t
)

wt
i = λt

(|(ΨtMt+1)i|+εi)
1−q , ∀i,

xt+1 = M t+1 + βxΨ̃
t
[
η
(
ΨtM t+1;wt

)
−ΨtM t+1

]
ξt+1 = ξt + βξ

[
zt+1 − (y − Φxt+1)

]
,

(19)

and the set of unrolling parameters is

{βz1 , βz2 , βM1 , βM2 , βx, βξ} .

Finally, the learning parameters in QADM-Net is summa-

rized as
{
βt
z1 , β

t
z2 , β

t
M1

, βt
M2

, βt
x, β

t
ξ, λ

t,Ψt, Ψ̃t
}T

t=1
and the

flowchart is shown in Fig. 1.
3) Sensing Matrix: In order to recover a large-scale image

without relying on the blocking strategy, we adopt the Struc-
turally Random Matrix (SRM) [7] as the sensing matrix:

Φ = DFR, (20)

where D ∈ Rm×n is a random sampling matrix, F ∈ Rn×n is
an orthonormal matrix, and R ∈ Rn×n is a uniform random
permutation matrix. This Φ leads to low computation cost
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Fig. 1. Flowchart of QADM-Net.

and storage capacity by adopting the corresponding operators
associated with D, F , and R, instead of using the original
matrix representations.

We observe that if the signal size of x is n, the computation
costs of Rx = R(x), FRx = F (Rx), and D(FRx) are
n, n(4n − 2), and m, respectively, provided the orthonormal
matrix F adopts the DFT (discrete Fourier transformation)
operator. Moreover, the computation cost of matrix-vector
multiplication Φx is m(2n − 1). But the storage cost can be
further saved as m, 0, and n for the matrices D, F , and R,
respectively, provided the orthonormal matrix F adopts DFT
(discrete Fourier transformation) operator. Based on the above
considerations, we set F to the Discrete Cosine Transform
(DCT) due to its fast computation and cost-effectiveness.

4) Loss Function: Since the QADM algorithm aims to find
a feasible minimum solution to problem (4) and QADM-Net
is the network architecture associated with QADM algorithm,
it is desired to have the output xT of QADM-Net close to the
ground-truth x0. Therefore, the loss function is designed as:

LtMSE =

T∑
t=1

∥∥xt − x0
∥∥2
2
,

where xt is the output of tth layer of the network. We call it
total MSE (tMSE) loss function.

On the other hand, we further follow our prior study [19] to
consider the tMSE-loss function in specifying the left-inverse
relation between Ψt and Ψ̃t, as mentioned in Sec. III-D1, as

Ltrans =

T∑
t=1

∥∥∥Ψ̃t(Ψt(M t))−M t
∥∥∥2
2
.

Overall, the loss function for QADM-Net is defined as:

L = LtMSE + δ · Ltrans, (21)

where δ > 0 is a parameter balancing LtMSE and Ltrans.

IV. EXPERIMENTS

We demonstrate the performance of QADM-Net in recon-
structing large-scale images.

A. Parameter Setting

The constant parameters in QADM-Net were q = 0.3 and
ε = 10−6 · 1n. The training parameters of QADM-Net were
initialized as βt

z1 = 0.1, βt
z2 = 0.1, βt

M1
= 0.1, βt

M2
=

0.1, βt
x = 0.1, βt

ξ = 0.1, and λt = 0.1, whereas C1, C2, C3, and
C4 in Ψ and Ψ̃ were were initialized using Xavier initializer
[13]. For Ci, the number of filters was set to nf = 32 with a
kernel size 3× 3.

The experiments were conducted on a PC with Intel Core
i7-7700 CPU, a NVIDIA GeForce GTX 1080 Ti GPU, and
Python with TensorFlow version 1.15.0.

B. Natural Image Reconstruction

1) Datasets for Training and Testing: We created the
training dataset by collecting the images of large sizes from
ImageNet by Step 1 below. The training dataset consisting of
images of size 1024×1024 is generated by Step 3 below. The
testing dataset was generated by Step 2 below.

1. Collect all of the images with sizes exceeding 1024×1024
from the testing dataset of ImageNet [6]. In this step, we
have 846 images.

2. Divide the images from Step 1 into two parts: the first 820
images was designated as the training dataset whereas
the remaining 26 images was the testing dataset, which
is called ImageNet26 here.

3. Crop each image in the training dataset into patches of
size 1024× 1024 with a stride of 256.

2) Training Details: During training, we adopted the Adam
optimizer [17] with a learning rate of 0.0001. The network was
trained for 100 epochs with a batch size of 1. The number of
layers was set to 5.

3) Performance Comparison: We compared QADM-Net
with state-of-the-art learning-based methods, including ISTA-
Net+ [27], CSNet+ [24], SCSNet [25], OPINE-Net [28], and
AMP-Net [29], that are block-based network models. Due to
space limit, we only show the comparison results in Table
II for dataset BSD68. We can see similar results for other
datasets. On the other hand, the reconstruction result for Ima-
geNet26, which is described in Sec. IV-B1, is shown in Table
III, where the comparisons are absent because, for example,
OPINE-Net [28] exhibits out-of-memory to test ImageNet26.

C. Medical Image Reconstruction

We adopted ADMM-Net [26] as the baseline and employed
the dataset from open-source code of [26], which is available
on GitHub, as training and test dataset.

1) Datasets for Training and Testing: We only compared
with ADMM-Net [26] because either the test datasets or source
codes of state-of-the-art methods were not released. The image
size of in datasets, Brain1 and Brain2, is 256× 256.

2) Training Details: During training, we adopted Adam
optimizer [17] with a learning rate of 0.0001. The network was
trained for 100 epochs with a batch size of 16. The number
of layers were set to 5.

3) Performance Comparison: We compared QADM-Net
with ADMM-Net [26], as shown in Table IV.
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TABLE II
AVERAGE PSNR (DB) COMPARISONS UNDER DIFFERENT MEASUREMENT
RATES ON BSD68. THE BEST RESULTS ARE MARKED IN BOLD RED AND

THE SECOND ONES ARE MARKED IN BOLD BLUE.

Measurement Rate 50% 40% 30% 20% 10%
ISTA-Net+ [27] 34.01 32.21 30.34 - 25.33

CSNet [24] 34.89 32.53 31.45 - 27.10
SCSNet [25] 35.77 33.86 31.87 - 27.28

AMP-Net-9-BM [29] 36.82 34.86 32.84 30.63 27.86
OPINE-Net [28] 36.32 34.33 32.46 30.38 27.81

QADM-Net 41.05 38.58 35.44 30.66 28.75

TABLE III
AVERAGE PSNR OF QADM-NET ON IMAGENET26.

ImageNet26 PSNR SSIM PSNR SSIM PSNR SSIM
Measurement Rate 50% 30% 10%

QADM-Net 43.53 0.975 38.88 0.945 33.27 0.849

TABLE IV
AVERAGE PSNR (DB) COMPARISONS ON MRI IMAGES.

Images Brain1/Brain2
Measurement Rate 50% 30% 10%

ADMM-Net [26] 36.62/33.55 34.03/30.55 28.40/24.88
QADM-Net 41.96/37.06 38.22/33.15 30.30/25.24

D. Model Size Comparison

Table V shows a comparison of parameter number and
model size of the network architecture for various methods
under measurement rate 10%. Evidently, the memory con-
sumption of training parameters in QADM-Net is at most 34%
of other methods.

TABLE V
COMPARISON OF TRAINING PARAMETER NUMBER AND MODEL SIZE WITH

MEASUREMENT RATE 10%.

Methods Parameter # Model Size
ISTA-Net+ [27] 336978 1.29MB

CSNet+ [24] 578688 2.21MB
SCSNet [25] 796416 3.04MB

AMP-Net-9-BM [29] 579555 2.21MB
OPINE-Net [28] 274845 1.05MB

QADM-Net 95075 0.36MB

V. CONCLUSIONS

In this paper, we presented a deep learning model for com-
pressive sensing of large-scale images. The key is to introduce
variable-splitting and propose an alternative ADMM algorithm
to avoid matrix inverse operator. Experimental results validate
the proposed method.
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